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Abstract:

This paper is devoted to the rise of hypothetical thinking in the tradition of 19th century
rational mechanics in general, and to the roots of Carl Neumann’s paper on the “Prin-
ciples of the Galilean-Newtonian Theory” within this tradition in particular. While
Neumann’s analysis of the law of inertia and Newton’s concept of space is well
known and accepted as an important step towards a better understanding of both, this
historical background — which sheds light on Neumann’s systematic arguments in different
respects — has been widely neglected. It is shown that the rise of “pure mathematics” plays
an important role for the rise of hypothetical thinking concerning the foundations of me-
chanics in general, and that this new understanding of mathematics is of utmost impor-
tance for Neumann’s hypothetical-deductive concept of science.

1. Introduction

In 1866, the philosopher and psychologist Wilhelm Wundt published
Die physikalischen Axiome und ilre Beziehung zum Kausalprinzip (Wundt
1866). This book is one of the latest manitests of what may be called
“classical mathematical philosophy of nature™ (CMN): It expresses the
view that natural philosophy can be established on the basis of certain
unshakable mathematical “axioms” of mechanics which deal with the
movement of “ponderable” masses underlying certain torces and con-
straints. About four decades later, a second, revised edition of this
work appeared under the title Die Prinzipien der Naturlehre. Ein Kapitel
aus einer Philosophie der Naturwissenschaften (Wundt 1910). Wundt seized
this opportunity in order to reflect critically on his former position, and
to indicate a dramatic change with respect to the understanding and use
of the concept “axiom,” both in mechanics and in (pure) mathematics,
in the two decades from 1866 onward: “What had been accepted as an
axiom in former times was now labelled as “hypothesis,” thereby ex-
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pressing that also alternative systems of premises — perhaps deviating es-
sentially from the established system — can be chosen, as long as they
serve the purpose of linking the phenomena which have to be descri-
bed” (Wundt 1910, 2).

In fact, the two decades which — according to Wundt — undermined
the traditional “axiomatic view” and paved the way for a new “hypo-
thetic view” in mechanics, include the first public debate about Bern-
hard Riemann’s Ueber die Hypothesen, welche der Geometrie zu Grunde
liegen (Riemann 1854 [1892], first publ. 1867) and — sometimes without
a clear demarcation from Riemann’s approach — on the Non-Euclidean
Geometries of Gauss, Lobatschewskij and the Bolyais. They also include
the rise of electrodynamics and thermodynamics as fields of mathemat-
ical physics in their own rights, and the rise of a broad discussion on the
epistemological status and tasks of natural science, highlighted inter alia
by the “description versus explanation-discussion” provoked by G. R.
Kirchhoff's Mechanik from 1876 (cf. Kirchhoftf 1876 [1897]). Wundt’s
historical explanation of the decline of CMN is restricted to three as-
pects: (1) the foundational debate in geometry, (2) the rise of the con-
cept of energy, which undermined the traditional basis of mechanics and
(3) the rise of electrodynamics and its radical “descendant,” the electron
theory of matter (Wundt 1910, 3). Today, a well-informed historian of
science will add at least one more reason: (4) The rise of a new strand of
phenomenalism within philosophy and the sciences, which is — with re-
spect to the destruction of mechanical “axioms” — most obvious in the
work of E. Mach.

As far as the criticism of Newton’s theory of absolute space and the
law of inertia is concerned, Mach had to accept — and frankly did accept
(Mach 1872 [1909], 47) — one mathematician as his precursor who was
obviously neither an adherent of phenomenalism, nor fitted well into
Wundt’s historical analysis of the decline of CMN: Carl Neumann, a
son of the mathematical physicist Franz Ernst Neumann. Neumann
the elder founded with Carl G. J. Jacobi the Konigsberg seminar for
mathematics and physics, which can be seen as the “nucleus” of German
theoretical physics in the second half of the 19" century (see Olesko
1991). In 1869, Carl Neumann gave his lecture On the Principles of the
Galilean-Newtonian Theory (Neumann 1869b) that — in sharp conflict
with Wundt’s position from 1866 — expressed emphatically a modern,
even “Popper-like” hypothetical-deductive understanding of mathe-
matical natural philosophy in general and especially a modern concept
of mechanics (MMN: “Modern Mathematical Philosophy of Nature”)

>
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thus opening a vivid discussion on its foundations which lasted until
Einstein and, in a way, made Einstein’s revolution possible.

These cursory remarks point to the two main objectives of this
paper: First and in general, [ am interested in the way how — and the rea-
son why — hypothetical thinking at first penetrated the discussion on the
principles of classical mechanics in the course of the early 19" century.
Wundt’s analysis, elaborated and extended later by the history of science
and the history of philosophy of science, concentrates on a relatively late
period. Even a superficial glimpse reveals the development in question:
The basic laws of mechanics, may they be formulated in a synthetic,
Newtonian style or in the later, analytical manner, are at the beginning
of the 19th century labelled as “axioms” (for example by J. L. Lagrange
or J. Herschel), as “necessary truths” or “indubitable principles” (for ex-
ample by P. S. de Laplace or W. Whewell) or — by a transcendental
transformation of these properties — as “synthetic principles a priori”
(by I. Kant, W. R. Hamilton and others). The set of basic laws used
for the organization of theoretical mechanics was understood as a unique
one, and each principle was dignified not only as general, but also as cer-
tain and evident, though the epistemological justifications of these fea-
tures differed considerably among philosophers and scientists. In the sec-
ond half of the nineteenth century, however, we meet with quite dif-
ferent notions for the same laws: After the “turning point” noticed by
Wundt, they are labelled as “conventions” (by H. Poincaré, for exam-
ple, though not for the first time), as mere “hypotheses” (by B. Rie-
mann, C. Neumann, L. Boltzmann and others) or as provisional “de-
scriptions” (see G. R.. Kirchhoft or E. Mach, for example). This change
of “second-order labels” is easily visible, but indicates a profound
change of the understanding of rational mechanics as a both mathematical
and empirical science that is less visible and the reasons of which are not
completely understood until now. In short, this development can be de-
scribed as removal of a traditionally mechanical Euclideanism — I am
using this “Lakatosian” term deliberately as it is “epistemologically neu-
tral”' — by a modern, “hypothetico-deductive” understanding of science

1 Euclideanism according to Lakatos expresses the view that the “ideal theory is a
deductive system with an indubitable truth-injection at the top (a finite con-
junction of axioms) — so that truth, flowing down from the top through the
safe truth-preserving channels of valid inferences, inundates the whole system”;
its basic aim “is to search for self-evident axioms — Euclidian methodology is
puritanical, antispeculative” (Lakatos 1978, II, 28 and 29). Euclideanism in
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for which the fallibility and revisability even of its first principles is de-
cisive. Diachronic analysis of the writings of many philosopher-scientists
show that the image of science in general, and mechanics in particular,
underwent such a change during the last decades of the 19" century —
Hermann von Helmholtz is perhaps the most impressive and best inves-
tigated case study in this respect (see Schiemann 1997). The process in
question is not a discontinuous, but a gradual one — it is a meta-theoret-
ical evolution that, to a certain extent, first paved the way for the later
scientific revolution. As 1 have described and examined this evolution
with respect to mechanics in some detail elsewhere (Pulte 2005, chs.
VI, VII), a short structural analysis of the early history in the second
part of this paper will suffice here. This part is restricted to the early dis-
solution of mechanical Euclideanism and focuses on the role of a new
understanding of mathematics in order to show that there were reasons
within the traditional mechanics of “ponderable” masses independent of
and prior to the empirical challenges (i. . the integration of “new” areas
of phenomena like those of electrodynamics and thermodynamics), in-
dependent of the rise of the debate about Non-Euclidean geometries
and also independent of the rise of modern phenomenalism (or empir-
ocriticism). In other words, the second part of this outline will end before
these aspects became predominant in the discussion on the principles of
mechanics. C. G. J. Jacobi will be the central figure of this part.

The second and more specific objective will be dealt with in the
third part of this paper: The literature on Carl Neumann and on his lec-
ture on the Galilean-Newtonian theory takes the new “MMN-posi-
tion” presented there as something coming “out of the blue.” I will
try to show, however, that Neumann’s turn can only be understood
in the context of the earlier development or, to be more concrete,
that it is strongly influenced by C. G. J. Jacobi and his new attitude to-
wards mathematics and the mathematically formulated mechanical prin-
ciples. This result seems to me of some importance for the history of
philosophy of science, because it shows that the neo-humanist under-

this sense is epistemologically neutral in so far as it is applicable both to traditional
rationalism and empiricism: whether the axioms at the top are revealed by the
‘light of reason’ (see Descartes, for example) or ‘deduced from phenomena’
(Newton) is not relevant for the above definition of Euclideanism. Moreover,
the dichotomy of traditional rationalism and empiricism conceals the common
characteristic of infallibility.
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standing of mathematics had a direct impact on the foundational discus-
sion on space and the law of inertia in the later 19" century.

2. The Rise of Hypothetical Thinking on the Foundations of
Mechanics in the First Half of the 19" Century

2.1 The Scientific and Metatheoretical Background

I. Newton in his Principia names his basic laws axiomata sive leges motus,
thus formulating two different demands for them: they have to describe
motion, and they have to organise the science of motion deductively.
The latter demand becomes more and more important in the course
of the 18™ century, as different basic concepts and laws had to be inte-
grated into rational mechanics. The long and complicated development
in question is accompanied by a decline of empirical and metaphysical
justifications of concepts and the laws combining them. This is true es-
pecially of the analytical tradition of mechanics, which becomes domi-
nant from the middle of the 18" century onwards. Without doubt, a full
understanding of this strand of mechanics can only be reached if the
striving of the underlying mechanical Euclideanism for an axiomatic-
deductive organization of the whole body of mechanical knowledge
is taken into account. It has to be noticed, however, that in the course
of this process an important meta-theoretical change takes place: The
“first principles” of mechanics become formal axioms of science rather
than material laws of nature. The principle of virtual velocities. later for-
mulations of the principle of least action or Hamilton’s principle clearly
show the consequences of this change: The rise of these principles is ac-
companied by an increase of the deductive demands and. at the same
time, a “semantic unloading” of their basic mathematical concepts
like moment, action, vis viva, potential, or kinetic energy (ct. Pulte
2001, 62, 74-77).

Lagrange’s analytical mechanics is most significant in this respect:
On the one hand, it continues the efforts of Euler, d’Alembert and oth-
ers to reach a deductive organization of mechanics, and brings these ef-
forts to an end. On the other hand, however, it marks a break with the
older tradition, thereby revealing the basic philosophical problems of
mechanical Euclideanism: Lagrange wanted to base mechanics on cer-
tain and evident mathematical principles without any recourse to meta-
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physical or empirical justification: “Mechanics can be understood as a
geometry with four dimensions,” and the “analysis of mechanics as an
extension of geometrical analysis” (Lagrange 1797 [1813], 337). This
kind of mechanics is a logical consequence and, at the same time, a disso-
lution of Euclideanism in its older meaning: Axioms become formal
principles of organization rather than principles with empirical content,
and the whole system is held together by logical coherence rather than
by “material” truth. In Lagrange’s concept of mechanics, the higher cal-
culus serves as the uniting element in the deductive chains. Insofar as
order and unity become the main targets, and the calculus the main
means, this mechanics is rightly called analytical, thus expressing both
the ambitious methodological and the specific mathematical character
of this science.

Lagrange shaped the image of analytical mechanics as a model sci~
ence for more than half a century. His understanding of rational me-
chanics as a “self-sufficient” and formal mathematical science, however,
inevitably leads to a smouldering conflict with the traditional meaning
of axiom as a self-evident first proposition, which is neither provable
nor in need of a proof. Lagrange wanted to start his mechanics with
one principle, i.e. the principle of virtual velocities. In the first edition
of his Méchanique Analitique, he introduced this general principle verbatim
as a “kind of axiom” (Lagrange 1788, 12). In the second edition, how-
ever, he stuck to this title, but had to admit that his principle lacked one
decisive characteristic of an axiom in the traditional meaning: It is “not
sufficiently evident to be established as a primordial principle” (Lagrange
1853/55, vol. 1, 23, 27). By two different so-called “demonstrations” he
tried to prove his primordial principle by referring to simple mechanical
processes or machines, thus trying to bring back intuitive truth to his
“axiom.”

Lagrange’s formulation and his later demonstrations of the principle
of virtual velocities posed a challenge for a number of mathematicians,
such as Fourier, Laplace, de Prony, Gauss, Carnot, Poisson, Poinsot and
Ampere. Their efforts to solve Lagrange’s foundational problem show
that the Méchanique Analitique indeed brought about a “crisis of princi-
ples” (Bailhache 1975, 7). All attempts to solve this crisis aimed at better
demonstrations, giving the principle of virtual velocities a more secure
foundation and making it more evident (cf. Pulte 1998, 158-161). Like
Lagrange, the contemporary and following mathematicians applied
their refined logical and mathematical methods in order to substantiate
the principle of virtual velocities by geometrical and mechanical argu-
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ments. Their meta-theoretical position can aptly be described as “a sort
of ‘Rubber-Euclideanism’,” because it “stretches the boundaries of self-
evidence.”” Despite this crisis, of which only the avant-garde of the con-
temporary scientific community was aware, analytical mechanics in the
tradition of Lagrange was seen as a model science in influential philos-
ophies of science, for example in A. Comte’s Cours de philosophie positive
(cf. Fraser 1990). Neither the “positivist” Comte nor empiricists like
J. Herschel or J. S. Mill were critical about mechanical principles qua ax-
ioms, nor were semi-Kantians like W. Whewell or W. R. Hamilton.
For different philosophical reasons — mainly for their empiricism or apri-
orism (in the Kantian, synthetic sense) with respect to mathematics —
they kept to the traditional CMM-ideal (cf. Pulte 2005, Ch. VI.1).

2.2 C. G. ]. Jacobt’s Conventional Mechanics

In German speaking countries the image and understanding of mathe-
matics in the early 19" century was strongly influenced by neo-human-
ism. This movement, then dominant in Germany, strongly emphasised
that science and education (Bildung) are ends in themselves. Mathemat-
ics and the old languages in particular should be regarded as an expres-
sion of pure intellectual activity (see Jahnke 1990). Empiricist concep-
tions of mathematics like those of the French mathematical physics or
British empiricism were sharply rejected, both with respect to their phil-
osophical foundations and to their utilitarian consequences. Mathemat-
ics was understood as a “pure” and autonomous mental activity, gov-
erned only by the rules of logic and destined for the “honour of the
human spirit” (cf. Knobloch et. al. 1995, 100—109, esp. 108). Mathe-
matical truth therefore had to be independent from any external expe-
rience and also from mediating intuition in the sense of Kant. The neo-
humanist ideal of pure mathematics brought about the problem of the
applicability of mathematics to the empirical sciences in a new and fun-
damental form insofar as established answers to this problem (traditional
metaphysical justifications, empiricist theories of abstraction, Kantian

2 Lakatos 1978, II, 7 and 9. Lakatos himself subsumes Lagrange and other math-
ematicians of the 18" century under this label. However, he also admits that the
history of the decline of Euclideanism (including its degeneration into ‘Rubber
Euclideanism’) in mechanics has still to be written. Pulte 2005 attempts to fulfil
this desideratum.
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synthetic a priori-approaches) lost their plausibility. In this context, the
foundational problem of analytical mechanics described above was only
one aspect — though one of eminent philosophical relevance — and the
mathematician C. G. J. Jacobi was the first adherent of this new concep-
tion of pure mathematics who addressed this problem.

[ will pass in silence over young Jacobi’s Platonistic answer to the
problem of applicability (cf. Knobloch et. al. 1995, 110-114), and
turn immediately to his last Vorlesungen tiber Analytische Mechanik from
1847/48 (Jacobi 1847/48 [1996]; cf. Pulte 1994), the philosophically
most interesting part of which was praised by Carl Neumann for the rig-
our of its criticism of the foundations of mechanics about two decades
later (cf. part 3.1). Jacobi’s rejection of Lagrange’s mechanics is the first
and most distinct expression of his criticism. As Jacobi’s last lectures
from 1847/48 were not published until 1996, his criticism was noticed
only by some of his students (like B. Riemann) and other mathemati-
cians (like C. Neumann). It was totally ignored in the histories of math-
ematics and physics, where Jacobi’s contribution to mechanics — under
the influence of his published Vorlesungen iiber Dynamik (from 1842/43,
publ. 1866; see Jacobi 1884) — is unanimously subsumed into Lagrange’s
approach. During his time in Berlin, however, Jacobi came to a different
estimation; his new attitude towards his old Lagrangian ideal is most
lively expressed in a warning to his students at the beginning of his lec-
tures directed against Lagrange’s “Rubber Euclideanism,” especially his
attempts to give a demonstration of his “axiom” of virtual velocities.” T
will omit the mathematical and physical details of Jacobi’s criticism, but
should point out the principle difference concerning their understand-
ing of mathematics. He describes Lagrange’s approach as follows (Jacobi

1847/48 [1996], 193—194):

Everything is reduced to mathematical operation ... This means the great-
est possible simplification which can be achieved for a problem ..., and it is
in fact the most important idea stated in Lagrange’s analytical mechanics.
This perfection, however, has also the disadvantage that you don’t study

S8

“[Lagrange’s] Analytical Mechanics is actually a book you have to be rather cau-
tious about, as some of its content is of a more supernatural character than based
on strict demonstration. You therefore have to be prudent about it, if you don’t
want to be deceived or come to the delusive belief that something is proved,
which is [actually] not. There are only a few points, which do not imply
major difficulties; I had students, who understood the mécanique analytique bet-
ter than I did, but sometimes it is not a good sign, if you understand something”
(Jacobi 1847/48 [1996], 26).
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the effects of the forces any longer ... Nature is totally ignored and the con-
stitution of bodies ... is replaced merely by the defined equation of con-
straint. Analytical mechanics here clearly lacks any justification; it even
abandons the idea of justification in order to remain a pure mathematical
science.

Jacobi’s reproach has two different aspects. First, he rejects Lagrange’s
purely analytical mechanics for its inability to describe the behaviour
of real physical bodies. In this respect, he shares the view of those
French mathematicians in the tradition of Laplace, who called for a
“mécanique physique” instead of a “mécanique analytigue.” This point
does not affect the foundations of mechanics itself. The second aspect,
however, does affect such foundations, because it concerns the status
of first principles of mechanics. For Lagrange, the principle of virtual
velocities was vital to gain an axiomatic-deductive organization of me-
chanics, and his two proofs were meant to save this Euclidean ideal. In
so far as this ideal lacks “any justification” and even “abandons the idea
of justification,” it can rightly be described as “dogmatic” (Grabiner
1990, 4). Jacobi, on the other hand, applies his analytical and algebraic
tools critically in order to show that mathematical demonstrations of
tirst principles cannot be achieved. At best they can make mechanical
principles “intuitive” (anschaulich) (Jacobi 1847/48 [1996], 93-96).
But intuitive knowledge is no inferential knowledge in his sense; it is
not based on unquestionable mathematical axioms and strict logical de-
duction. At this point Jacobi — the exponent of pure mathematics — dis-
misses Euclideanism as an ideal of science: The formal similarity between
the mathematical-deductive system of analvtical mechanics and a system
of pure mathematics (as number theory. for example) must not lead to
the erroneous belief that both theories meet the same epistemological
standards. Indeed, as far as I am aware, Jacobi was the first representative
of the analytical tradition who saw and drew this consequence.
Having described the origin and general features ot Jacobi's destric-
tive criticism of Lagrange’s Euclideanism, I should shortly outline his
constructive view of mechanical principles and the role of mathematics
for them. According to Jacobi, mathematics offers a rich supply of pos-
sible first principles, and neither empirical evidence nor mathematical or
other reasoning can determine any of them as true. Empirical confirma-
tion is necessary, but can never provide certainty. First principles of me-
chanics, whether analytical or Newtonian, are not certain, but only prob-
ably true. Certainty of such principles, a feature of mechanical Eucli-
deanism, cannot be achieved. Moreover, the search for proper me-
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chanical principles always leaves space for a choice between different al-
ternatives. Jacobi, well educated in classical philology and very con-
scious of linguistic subtleties, consequently called first principles of me-
chanics “conventions,” exactly 50 years before H. Poincaré did (Jacobi
1847/48 [1996], 3, 5):

From the point of view of pure mathematics, these laws cannot be demon-
strated; [they are] mere conventions, yet they are assumed to correspond to
nature ... Wherever mathematics is mixed up with anything, which is out-
side its field, you will however find attempts to demonstrate these merely
conventional propositions a priori, and it will be your task to find out the
false deduction in each case. ...

There are, properly speaking, no demonstrations of these propositions,
they can only be made plausible; all existing demonstrations always pre-
sume more or less because mathematics cannot invent how the relations
of systems of points depend on each other.

It is important here to take note of Jacobi’s “point of view of pure
mathematics”: He draws a line between mathematics itself and “any-
thing, which is outside its field.” Mathematical notions and propositions
on the one hand and physical concepts and laws on the other hand must
be sharply separated. This marks a striking contrast to Lagrange’s “phys-
ico-mathematician’s” point of view and is essential for Jacobi’s “con-
ventional turn.” This is firstly because his idealistic background prevents
him from believing that mechanical principles are grounded in experi-
ence. Secondly, he shares Lagrange’s opinion that no metaphysical justi-
fication of such principles is possible. And finally, he rejects Lagrange’s
view that mathematics itself can prove these principles as certain and
evident. Mathematics, however, can offer different principles of describ-
ing physical reality in an economical way. It is in mathematics that the
conventional character of these principles has to be located, because
mathematics offers more possibilities than nature can realize.

For Jacobi, conventions are neither gained by experience (i.e., they
are no inductive generalizations) nor are they a priori-principles (in
Kant’s sense). Comparable to Poincaré (cf. Pulte 2000), he comes to a
“third-way-solution,” which makes a choice between different alterna-
tives possible and necessary. Jacobi, too, holds the opinion that this
choice is not arbitrary, but restricted by considerations of simplicity
and convenience: “... again a convention in form of a general principle
will take place. One can demand that the form of these principles is as
simple and plausible as possible” (Jacobi 1847/48 [1996], 5). Of course,

mechanical conventions, as principles, need to be empirically relevant.
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They are assumed in order “to correspond to nature” in a way “that ex-
periments show their correspondence” (Jacobi 1847/48 [1996], 3). Ja-
cobi, however, is not explicit on the question of how conventions are to
be handled in case of empirical anomalies. But as he sometimes remarks,
that mechanical principles are not certain. but only “probable” (Jacobi
1847/48 [1996], 32—33), he obviously believes that experience is enti-
tled to falsify principles. Poincaré, on the other hand. exempts mechan-
ical conventions from empirical falsification.

It is important to note that Jacobi applies his concept not only to an-
alytical principles, where it might be used in the trivial sense that ditter-
ent conventions can be used by merely formal, empirically meaningless
operations, but also to Newton’s synthetical “axioms,” especially to the
law of inertia. They, too, are first and above all mathematical propositions.
Here, Jacobi comes close to the semantic aspect of conventions in Poin-
caré’s “hidden definition-interpretation.” As is well known, Poincarée
regards the law of inertia as a fixation of the meaning of “force-free
movement.” Other définitions déguisées are possible and permissible, for
example motions with changing velocity or circular motions. Jacobi’s
interpretation seems similar (Jacobi 1847/48 [1996], 3—4):

From the point of view of pure mathematics it is a circular argument to say
that rectilinear motion is the proper one, [and that] consequently all others
require external action: because you could define [sefzen| as justly any other
movement as law of inertia of a body, if you only add that external action is
responsible if it doesn’t move accordingly. If we can physically demonstrate
external action in any case where the body deviates, we are entitled to call
the law of inertia, which is now at the basis [of our argument], a law of
nature.

The circular argument presented here suggests that the law of inertia
implies a convenient definition: It determines the meaning of “being
free of external forces.” We are entitled to choose other movements,
for example circular movement, if we can trace back any deviation
from circular movement to external actions.

To sum up, one can say that Jacobi’s “conventional” mechanics
marks a sharp break with the older tradition of mechanical Euclidean-
ism, and that his neo-humanist concept of pure mathematics is funda-
mental for this break. While possible mechanical principles are free in-
ventions of mathematics, a methodologically reflected decision is neces-
sary in order to come to empirical laws, which can, however, never gain
the certainty of the propositions of pure mathematics. While the older
tradition of mathematical physics keeps to an axiomatic-deductive ideal
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of mechanics (CMN), and strives for making its first principles safe and
evident in its scientific practice, Jacobi rejects this ideal as futile and de-
mands the acceptance of the revisability and fallibility of mechanical
principles in scientific practice. In this sense, his conventional under-
standing of mechanics — which is not yet “conventionalistic” in the
sense of Poincaré’s doctrine elaborated half a century later — is an impor-
tant early contribution to a modern, hypothetical understanding of me-
chanics (MMN).

2.3 A Note on the Reception of Jacobi’s Lectures

One of the participants at Jacobi’s Vorlesungen iiber Analytische Mechanik,
delivered in Berlin in 1847/48, was Wilhelm Scheibner, whose notes
served as the basis for the later publication (Jacobi 1847/48 [1996]).
Scheibner went to Leipzig, where in 1853 he qualified as a university
lecturer. The thesis he defended in his disputatio was: “The principles
leading to the basic equations of mechanics are of a conventional nature,
especially the principle of virtual velocities, and the principle named
after d’Alembert cannot be demonstrated completely.”* Other partici-
pants likewise passed Jacobi’s ideas to colleagues and students (cf. Jacobi
1847/48 [1996], XLIX~—LI).

The most eminent mathematician who attended the Berlin Vorlesun-
gen was B. Riemann. After his return to Gottingen, he was busy work-
ing on the principles of natural philosophy and their epistemological and
methodological implications. In this time he wrote the fragment Newue
mathematische Principien der Naturphilosophie (Riemann 1853 [1892]).
The title obviously alludes to Newton’s Principia. The relation of natural
philosophy and physical geometry cannot be discussed here (cf. Pulte
2005, 388—399). It should be noted, however, that the “New Principles
of Natural Philosophy” precede his famous lecture Ueber die Hypothesen,
welche der Geometrie zu Grunde liegen (Riemann 1854 [1892]). In his ear-
lier fragment, Riemann picks up Jacobi’s rejection of mechanical “axi-
oms” and integrates this point of view into his own more empiricist
framework, which likewise has no place for empirical laws which are
distinguished by mathematical certainty. He does not, however, adopt Ja-

1 See the document ‘Diss. Phil. Lip. 1840—1872 in the archives of Universitit
Halle (‘Personalakte Wilhelm Scheibner’); cf. also Jacobi 1847/48 [1996],

XLIX~-L.
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cobi’s label “convention,” but uses the more traditional notion “hy-
potheses” to articulate his position (Riemann 1853 [1892], 525):

Newton’s distinction between laws of motion or axioms and hypotheses
seems to me untenable. The law of inertia is the hypothesis: If a material
point were alone in the world and moved in space with a definite velocity,
it would preserve this velocity constantly.

A hypothesis, according to Riemann, is anything which is “added to ex-
perience by our thinking” (Riemann 1892, 525). He refuses to accept a
mathematical statement as an axiom of mechanics, if, as he thinks, it ex-
ceeds our experience and, in a certain sense, even contradicts it.’

It is important to note that his understanding of mathematics as the
driving force of “hypotheticity” both in his mechanics and in physical
geometry: Scientific experience needs mathematical conceptualisation,
but, vice versa, mathematical concepts can only potentially be applied
in present natural philosophy. Hence it follows a genuine methodological
demarcation between both areas. Physics has to decide by measurement
what concepts from the rich “supply” offered by mathematics are suit-
able for the representation of phenomena. As the mathematical princi-
ples can only be deductively checked by empirical facts, it is even pos-
sible to have different sets of principles, which are corroborated by the
same facts (Riemann 1854 [1892], 273).

Without doubt, Riemann’s fragment on “New Mathematical Prin-
ciples of Natural Philosophy” presents mechanics as a hypothetical-de-

5 Later he makes a similar point concerning Euclidean axioms as a basis of physical
geometry, when he says, that “we neither perceive whether and how far their
connection is necessary, nor a priori, whether it is possible” (Riemann 185+
[1892], 273). When he doubts their necessity, he obviously has in mind other svs-
tems of physical geometry. When he doubts their very possibility, he does not
only raise the question of logical consistency, but also the question of whether
Euclid’s axioms are true for physical space or not. A physical realisation of rec-
tilinearity, according to Newton’s first law, is a part of this problem. and it
seems clear that this part was first understood as problematic,

It is a widespread misconception that geometry was understood as an ‘inde-
pendent” basis of mechanics and that, for this reason. hypotheticity of the prin-
ciples of mechanics was a natural consequence of the hypothetcity of the prin-
ciples of physical geometry. In Newton’s Principia. we find an mverse ‘founda-
tional relation’ between mechanics and geometry. and philosopher-scientists
like von Helmholtz adopted this view: Geometry. as an empirical science, de-
pends on mechanics (see Schiemann 1997, 219-234). This aspect is important
to overcome the ‘standard view” that the rise of MMN is a mere ‘epiphenome-
non’ of the rise of Non-Euclidean geometries.
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ductive science in its modern sense. It is as alien to Mechanical Eucli-
deanism as Jacobi’s “conventional mechanics.” Hence, Riemann’s ap-
proach is comparable to, but not identical with Jacobi’s understanding
of mathematics (cf. Pulte 2005, 375~388): It is basically the autonomy
of mathematics from empirical constraints, which brings about the hypo-
thetical in mathematical physics in his framework too. For the scientific
community, however, this aspect of his work remained widely un-
known, because his fragments on natural philosophy were not published
before 1876.

C. Neumann, to whom I will now turn, learned from Jacobi’s Vor-
lesungen through the notes taken by W. Scheibner. In 1869, when he
gave his lecture Ueber die Principien der Galilei-Newton’schen Theorie (Neu-
mann 1869b), he too did not know Riemann’s fragments on natural
philosophy, nor was he aware of Riemann’s Habilitationsvortrag on ge-
ometry.® This is important in order to understand the actual roots and
outlook of Neumann’s inaugural lecture.

3. The Roots of Carl Neumann’s Principles of the
Galilean-Newtonian Theory

3.1 The Background until 1869

In order to understand the origin and scope of Carl Neumann’s Leipzig
“Principles,” another inaugural lecture, given four years earlier in Tii-
bingen and published as Der gegenwirtige Standpunct der mathematischen
Physik (Neumann 1865), is extremely helpful: The first parts of both
lectures are nearly identical (cf. Neumann 1865, 1-16 and Neumann
1868b, 1—11), thus making it easy to identify essentially new elements
in the latter.

The Tiibingen “Point of View” deals mainly with the mathematical
theory of electricity and magnetism. Mechanics serves as an ideal of sci-
entific theory formation: Its outstanding merit is to bring a great num-
ber of phenomena under a small number of “basic ideas” (Grundvorstel-
lungen), and these are “inertia” and “attraction” (Neumann 1865, 13—

6 Neumann refers to Riemann’s Hypothesen in one of the footnotes to his lecture
(Neumann 1869b, 31-32, n. 10). These footnotes, however, were added later
(see, for example, Neumann 1869b, 24, n. 2). Cf. Pulte 2005, 402—412, for
more details.
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14). These basic ideas should not be understood as explananda in the
sense that unknown phenomena are reduced to known phenomena, be-
cause the basic ideas themselves are “not more explicable” and even
“totally incomprehensible” (Neumann 1865, 14, cf. 34—35). Mechanics
forms a model science for other parts of physics for exactly this reason: A
perfect science reduces a maximum of phenomena under a minimum of
basic ideas, albeit that these ideas themselves may be epistemologically
opaque (see Neumann 1865, 17). Neumann dismisses here the tradi-
tional CMN-claim for evidence of first principles, and anticipates some
of Mach’s and Kirchhoff’s ideas of how scientific theories and phenom-
ena are related. However, the basic ideas of mechanics (inertia, gravity)
are neither understood as revisable, arbitrary or matter of choice, nor
does Neumann discuss the validity of the mechanical principles related
to these ideas (law of inertia, second law of motion, law of gravity) — the
Tibingen “Point of View” does not include any critical discussion of
the principles of mechanics at all. Finally, the contribution of mathematics
to the character and status of mathematical physics plays no significant
role in this lecture. These features have to be kept in mind with respect
to the Leipzig “Principles” from 1869.

In 1868, Neumann moved from Tiibingen to Leipzig, where he got
the opportunity to study Jacobi’s lecture from 1847/48 first hand via
W. Scheibner (cf. Jacobi 1847/48 [1996], LII, n. 166). One year
later, he published a paper on the principle of virtual velocities and dis-
cussed Jacobi’s mathematical treatment affirmatively. Moreover, he was
impressed by Jacobi’s philosophical analysis of the principles of mechan-
ics. In comparison to the Konigsberg Dynamik, he states. Jacobi’s Berlin
lecture “distinguishes itself by a criticism of the foundarions of mechanics
which — in this rigour — has never been articulated in public until
now” (Neumann 1869a, 257). From Neumann's marks and marginal
notes in Scheibner’s copy we know which of Jacobi's remarks he was
most interested in; those discussed above (part 2.2) belong to them
(see Jacobi 1847/48 [1996], LXII, 3—4). At the third of November
1869, when he was fully aware of Jacobi’s point of view, Neumann
gave his inaugural lecture in Leipzig. While former reconstructions of
this lecture assumed it as a “given” starting point of the public debate
on the foundations of mechanics (see, for example, DiSalle 1993), the
background sketched here seems important to me for an understanding
of the origin as of the content of this lecture. In what follows, I will
leave aside Neumann’s analysis of the law of inertia, absolute space
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and the “body alpha” (cf. Pulte 2005, 421-429), and confine myself to
his meta-theoretical point of view.

3.2 “Hypotheticity” in Neumann’s Principles of the
Galilean-Newtonian Theory

Though Carl Neumann repeats large passages of his Tiibingen lecture,
his general objective in 1869 is quite different from that in 1865. He is
now interested in the truth and certainty of the principles of mathemat-
ical physics in general, and of mechanics in particular. Mathematics itself
becomes important for his argument, and he draws now for the first time
a sharp demarcation between the principles put first at the deductive
structures of physical theories and those of logic or pure mathematics.
In full agreement with Jacobi, Neumann sharply defines where the par-
allel between theories of mathematical physics and pure mathematics
ends, i.e. before the principles of the theories in question (Neumann
1869b, 12):’
For if we wanted a physical theory that is not based on some incomprehen-
sible and hypothetical fundamental notions, but rather one that proceeds
from theorems that bear the stamp of irrevocable certainty, that offer in them-
selves the guarantee of an unassailable truth, then we would be forced to take

refuge in the theorems of logic or mathematics. But it would prove impos-
sible to deduce a physical theory from such purely formal theorems.

Mathematical physics can not be deduced from propositions of logic and
pure mathematics, because these propositions are without empirical
content. An empirical theory can profit from the truth and certainty
of those propositions only qua “deductive certainty,” not at the genuine
level of principles. This duality of certism (with respect to logic and pure
mathematics) and fallibilism (with respect to mathematical physics) is not
present in Neumann’s Tiibingen lecture, and it can be traced back to his
reception of Jacobi. But there is more to come with respect to the prin-
ciples of mathematical physics (Neumann 1869b, 12—13):

We have to admit that for those principles or hypotheses [of physics] — in-
deed because they are incomprehensible, because they are arbitrary — one can-
not speak of correctness or incorrectness, of probability or improbability, at
all. ...

7 In the following quotations from Neumann’s lecture the English translation
from 1993 was used, but modified in several cases (cf. Neumann 1993).
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To be sure we are sometimes able to use the word probable as well as the
word true as an Epitheton ormans [i.e. a decorating epithet]. But we shall wish
to claim only that until today these principles have best been corroborated,
not that they are established forever, and even to a lesser extent that they
(like a theorem of logic or mathematics) offer in themselves the guarantee
of unassailable stability, the guarantee of irrevocable truth.

Strictly speaking, principles that are starting points of a theory of physics
will never correctly be called true or probable. Rather, they will always
be regarded ... as something arbitrary and incomprehensible.

While Jacobi is willing to accept mechanical principles in the best
case as “probably” true, Neumann’s dictum “neither true nor probable”
— reminiscent of A. Osiander’s famous preface to Copernicus’s De revo-
lutionibus (Neumann 1869b, 12, 24—25) — goes further: As mathematical
physics is strictly deductive, neither truth nor probability (in the sense of
“degree of certainty”) can be transferred to the principles at the top (cf.
part 3.3). Therefore the first principles are not immune from empirical
falsification. Neumann'’s attitude, that even these principles are at stake
when a theory is tested, explicitly includes the basic principles of the
Galilei-Newtonian mechanics: They, too, can be overthrown; they are
“arbitrary” and “moveable,” as he repeatedly says (Neumann 1869b,
13—15, for example). These characteristics of any principles are rooted
in their mathematical character: The area of mathematics is “infinite,”
and therefore the “latitude for the arbitrary choice of principles is extra-
ordinarily large” (Neumann 1869b, 32, 31, n. 10). This does not mean
that Neumann asks for an arbitrary proliferation of principles without
methodological guidance, but that any claim for their validity depends
on empirical tests at the end of a deductive chain, and that the process
of testing can never — even in the case of repeated corroboration — jus-
tify a dogmatic attitude towards the theory in question and the princi-
ples at its top (cf. Neumann 1869b, 23).

Like Riemann, Neumann does not adopt Jacobi’s notion convention,
but uses the traditional hypothesis for his characterisation of first princi-
ples of mathematical physics. (All these “principles” are, basically, “hy-
pothesis”; Neumann 1869b, 12). Like Jacobi, however, he stresses the
possibility of choosing quite different principles, thus indicating that dif-
ferent sets of principles and therefore different theories on one area of
phenomena are possible (Neumann 1869b, 23). And like Riemann,
he explicitly rejects not only evidence and certainty of first principles,
but also one last residuum of traditional CMM: the uniqueness of first
principles (and theories) of mathematical physics.
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This is the reason why Neumann rejects young H. von Helmholtz’s
claim that principles of mathematical physics are to be understood as el-
ements of “objective reality” (Neumann 1869b, 23). It is the “essence of
mathematical-physical theories,” he says, to be “subjective constructions,
originating from us,” and ‘“‘starting from arbitrarily chosen principles
and developed in a rigorous mathematical manner,” and determined
to “supply us with the most accurate picture possible of phenomena”
(Neumann 1869b, 22).

Within this philosophical framework, Neumann’s discussion of ab-
solute space and the Newtonian law of inertia as well as the introduction
of his well-known “body Alpha” — topics not central for my outline it-
self — gain a definite methodological meaning: Neumann divides up the
traditional law of inertia as an indubitable, dogmatic principle into three
different principles (existence of Alpha, rectilinearity, uniformity),
which together form the empirical content of this law. This decompo-
sition and the explication of different empirical attributes by Neumann
are paradigmatic for a modern understanding of mathematical philoso-
phy of nature (MMN): explication and reflection of premises, criticism
of hidden (metaphysical) assumptions, operational formulation of em-
pirical tests and other characteristics of a modern concept of science® can
be found in Neumann’s Leipzig inaugural lecture. And the origin and
meta-theoretical viewpoint of this hallmark of CMN cannot be under-
stood without the rise of a new understanding of mathematics.

3.3 A Note on Neumann as a Precursor of Popper

K. R. Popper, in his article A Note on Berkeley as a Precursor of Mach, ac-
knowledged Berkeley’s modern, quasi-Machian critique of essentialism in
general (Popper 1953). Mach frankly acknowledged at least Carl Neu-
mann’s priority with respect to the critique of Newton’s absolute space
and the law of inertia (Mach 1872 [1909], 47, n. 1). It seems, however,
that Popper nowhere acknowledged Neumann’s merits for the rise of a
“critical” concept of science in his sense, including a strict fallibilism.

Admittedly, Neumann is not looking for an epistemological and
methodological basis of his understanding of scientific theories. There

8  Cf. Diemer 1968, Diemer and Kénig 1991, Schiemann 1998, Part A, esp. A.
IV, and Pulte 2005, ch. II for a detailed analysis of the characteristics of ‘clas-
sical’ and ‘modern’ concepts of science.
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is no criticism of induction, no discussion of a criterion of demarcation
or an epistemological investigation into the “empirical basis” to be
found in his lecture. However, the mathematical physicist Neumann
and the philosopher of science Popper share some convictions and in-
sights concerning scientific theories worth mentioning. Both thinkers
are anti-essentialists and anti-instrumentalists (cf. Pulte 2005, 418—
421). Both are anti-dogmatists and deductivists with respect to scientific
theories and hold the view that they are, by and large, determined by
their first principles. Both emphasize that the corroboration of principles
can never demonstrate their truth or probability. And both understand
theory-building as a creative process of inventing and testing principles
and share the belief in scientific progress as an outcome of this process,
as long as it is controlled by a methodological reflection. Popper certain-
ly would have subscribed to the concluding sentence of Neumann’s
“Principles”: “We must always be aware that these principles are some-
thing arbitrary, and therefore something mutable, in order to survey,
wherever possible, what effect a change of these principles would have
on the whole shape of a theory, and to be able to realise such a change
at the right time, and (in a word) to be able to preserve the theory from
petrification, from an ossification that can only be pernicious and an obsta-
cle to the advancement of science” (Neumann 1869b, 23; Neumann’s
emphases).

4. Conclusion

I would like, with three short remarks, to sum up my outline of the
structural development of the rise of hypothetical thinking with respect
to the foundations of mechanics. Firstly, modern understanding of me-
chanics as a genuine physical science should not blind us to the fact that
in the 18" and in early 19™ century it was credited with the evidence
and certainty of mathematics, being de facto regarded as epistemologically
equivalent to Euclidean geometry by nearly all scientists and most phi-
losophers of science. Euclideanism in Lakatos’s sense was, indeed, the
dominant image of rational mechanics as a science up to the middle
of the 19" century (CMN). Secondly, I have stressed the “top down-
perspective” of the working mathematical physicist, in order to show
that the dissolution of mechanical Euclideanism and the rise of hypo-
thetical thinking starts here, at the “top.” And it had to start here, because
a “bottom up” dissolution (by empirical falsifiers) could take place only



96 Helmut Pulte

after the existence of true “axioms” of mechanics became dubious. The
modern understanding of mechanics (MMN), predominant in the last
two decades of the 19" century, is an outcome of both processes. Third-
ly, I have underlined the importance of a new understanding of math-
ematics for the development in question. In the course of the 19" cen-
tury, a “shrinking-process” of mathematical evidence and certainty takes
place, and not only physical geometry, but also mathematical physics is
affected by this process. The concept of pure mathematics, isolating arith-
metic, algebra and analysis as the remaining mathematical “paradise” of
evidence and certainty from the larger area of the mathematical sciences,
plays a crucial role in this process. My outline has stressed the position of
the prominent mathematicians C. G. J. Jacobi, B. Riemann and C.
Neumann, but minor figures like W. Scheibner, W. Schell, O. Rausen-
berger and others could be added.

While the application of mathematics in the sciences was, for a long
time, understood as the best possible expulsion of the “demon named
hypotheticity,” the rise of modern mathematics and — in its succession
— modern logic taught philosophy of science that this kind of “exor-
cism” will not work for the empirical sciences. Though W. V. O.
Quines “Two Dogmas” promoted a new empiricism in the philosophy
of mathematics, the older lesson was not lost. And today, there is hardly
any scientist or philosopher of science who believes that hypotheticity of
principles of empirical theories and, consequently, of empirical theories
themselves, is a demon at all.
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