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Chapter 1
Introduction

The essavs collecied in this volume were originally contributions 1o the conference
FExplaration and Proof in Mathematics: Philosophical and Educational Perspectives,
which was held in Essen in November 2006, The essays are substantially extended
versions of those papers presented at the conference; ewch essay has been reviewed by
two reviewers and has undergone eriticism and revision.

The conference was organized by the editors of this volume and brought together
people from the felds of mathematics education. philosophy of mathematics and
history of mathemuatics. The conference organizers firmly believe that this interdis-
ciplinary dialog on proof between scholars in these three fields will be fruitful and
rewarding for each feld for several reasons.

Developments in the practice of mathematics during the last 3 decades have led
e new types of prool and argumentation, challenging the established norms in this
arei. These developments originated from the use of computers (both as heuristic
devices and as means of verification), from a new guality in the relations of math-
ematics o its applications in the empirical sciences and technology (see the Jafte—Quinn
paper and the subseguent debate among mathematicians, for example), and from a
stronger awareness of the social nature of the processes leading to the acceptance
ol a proof,

These developments reflect the philosophy of mathematics, partly ex post facto,
and partly in anticipation. Philosophers have long sought to define the nature of
mathematics, notably by focusing upon its logical foundarions and its formal structure,
Over the past 40 years, however, the focus has shifted 1o encompass epistemological
issues such as visualization, explanarion and diagrammatic thinking.

As a consequence, in the philosophy and history of mathematics the approach w
understanding mathematics has changed dramatically. More amention is paid
o mathematical practice. This change was first highlighted in the late 1960s by the
work of Imre Lakatos, who pronounced mathematics a “guasi-empirical science.™
His work continues 1o be highly relevant for the philosophy of mathematics as well
as for the educational aspects of mathematics.

The work of Lakatos and others gave rise 1o conceptions of mathematics in
general, and of proof in particular, bused on detailed studies of mathematical practice.
Recently, these studies have been (requently combined with the epistemological points

G. Hanna ct al. {eds, ), Explanation and Proof in Mathematics: 1
Philosophical and Edvcational Perspectives, DOL 1L 1007/9T8-1-4419-0576-5_1,
i Springer Scicnee+ Business Media, LLC 2000



2 It rodusction

of view and cognitive approaches commonly subsumed under the term “naturalism.” In
this context, philosophers have come to a greater recognition of the central impor-
tance of mathematical understanding, and so have looked more closely at how
understanding s conveved and at what counts as explanation in mathematies. As
might be expected given these two changes in focus, philosophers of mathematics
have turned their attention more and more from the justificatory to the explanatory
role of prool. Their central questions are no longer only why and how a proofl makes
a proposition true but also how it contributes to an adequate understanding of the
proposition and what rele is played in this process by [actors that go beyond logic.

The computer has coused a radical change in edrcational practices us well. In
algebra, amalysis, geometry and statistics, for example, computer software already
provides revolutionary capabilities for visualization and experimentation, and holds
the promise of still more change. In sum, trends in the philosophy and history of
mathematics, as well as in mathematics education, have lead to a diversity of notions
of proof and explanation. These trends interact, as people in one field are sensitive
to developments in the others. The tendencies in the different fields are not
identical, however: each feld retains its own peculiarities.

The present volume intends W strengthen, in particular, mutusl awareness in the
philesophy of mathematics and in mathematics education about these new devel-
opments and 0 contribute 0 a more coherent theoretical framework based upon
recent advances in the different fields. This seems quite possible (even necessary)
in light of the strong empirical and realistic tendencies now shared by philosophy
of mathematics and mathematics edvcation. More important, though they share a
strong interest in these new understandings of mathematical explanation and proof,
philosophers of mathem:tics and researchers in mathemarics edvcation usually
work in different institutional settings and in different research programs. It is
crucial that researchers in hoth fields take an interest in the problems and guestions
of the other. 8o, we invited philosophers and historians W reflecton which dimensions
of mathematical proof and explanation could be relevant to the general culture and
to broadly educated adults and asked people From didacties w0 specifically elicit
the epistemological and methodological aspects of their ideas.

In preparing the conlerence we identified four subthemes wo help organize this
dialop between philosophers of mathematics and mathematics educators. They
refer o central concerns of the two groups as well as designating issues on which
hoth groups are currently working:

1.1 The Legacy of Lakatos

Luakatos” conception of mathematics as a “guasi-empirical science™ has proved
influential for the philosophy of mathematics as well as for the educational contexi.
Though the naive idea that Lakatos™ concepts could be transferred directly into the
classroom, in the hope that insights into the need for proof would arse immediately
from classroom discussions, has been proven untenahle, Lakatos” work is still an
inspiration For both philosophers and educators,
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1.2  Diagrammatic Thinking

The term “diagrammatic thinking™ was coined by C. 8. Peirce w designate the fact
that thinking cannot be explained by purely logical means but is deeply dependent
upon the systems of symbols and representations that are used. Independently
of Peirce and philosophical discourse, this idea plays a key role in the didacties of
mathematics, particularly in relation 1o mathematical argumentation and proof.

1.3 Mathematical Prool and the Empirical Sciences

A number of authors conceive of marhematics in irs connection with the empirical
setences, especially physics. One can designale this approach as a form of physicalism
—albeit in the broad meaning of that term. This does not at all mean that mathematics
itsell is considered w be an empirical science in a stricl epistemological sense. This
position stresses, rather, that the contents, methods and meaning of mathematices are
1o be discussed under the point of view that mathematics contributes, via the empirical
seiences, to our understanding of the world around ns. Theoretical concepts of
mathematics, such as group and veclor space, are 1o be seton a par with theoretical
concepts of physics, such as elecrron amd electromagnetic wive,

1.4 Different Types of Reasoning and Proof

In the practice and reaching of mathemartics, different forms of marhematical
argumentation have evolved; some of these are considered as prools proper and
some as hewristic devices. Besides formal proofs, we mention the various forms of
induction, analogy, enumeration, algebraic manipulation, visualization, computer
experimentation, computer proof and modeling. The conference tried to understand
these modes of argumentation better and in greater depth, and v analyse the different
views of their seceptability and fruitfulness on the part of mathematicians, philosophers
and mathemaltics educators,

As it mmed out, the subthemes proved w be recurring issues which surfaced in
various papers rather than suitable bases for grouping them. Hence, we decided 10
organize the essays for the book in three broad sections.

Part I, “Reflections en the naiwre and teaching of proof,” has seven papers
belonging to the first, third and fourth main themes of the conference. Lakatos®
philosophy of mathematics is discussed or applicd mainly in Koeisier’s and Larvor's
articles. The function of proof and explanation in mathematics and the empirical
sciences plays a more or less prominent role in Jahnke's and Mormann’s papers.
Different theoretical types of proofs and their practical implications are central o
the papers of Leng and Hanna and Barbeau. Heinze's paper plays a special role,
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because it deals with mathematical proofs neither from the point of view of the
philosopher or historian of mathematics nor from that of mathematical educators,
but brings in the perspective of working mathematicians,

Hins Niels Jahnke's paper “The Conjoint Ovigin of Proof and Theoretical
Physics™ “riangulates” the histerical, philosophical and educational aspects of the
idea of mathematical proot in ancient Greece. Jahnke argues that the rise of
mathematical proof cannot be undersiood solely as an outcome of social-political
processes or of internal mathematical developments, but rather as the result of a
fruitful interaction of both. Following mainly A. Szabé’s path-breaking historical
studies of the concept of proof, Jahnke argues that mathematical proof — at least in
the carly context of dialectic — was undersiood as a mode of rational discourse not
restricted to the aim of securing “dogmatic™ claims. It mainly served to defend
plausible presuppositions and w0 organize mathematical knowledge in an
axiomatic-deductive manner. Setting up axioms and deducing theorems therefore
were by no means unique to mathematics proper (i.e., peometry and arithmetic) but
were also apphied in other fields of knowledge, especially in those areas later con-
sidered parts of theoretical physics (e.g.. statics. hydrostatics. astronomy), Jahnke
then integrates into his argument 2 Maddy’s distinetion between “intrinsic™ and
“extrinsic™ justification of axioms in order to show that (pure) mathematics in the
twenticth century could not have evolved without an extrinsic motivation and
justification of basic hypotheses of mathematics and therefore shows marked
similaritics w the early Greek tradition. Consequently, Jahnke argues for a “new™
manner of discussing mathematical proof in the classroom not only by integrating
clements of the “old™ dialectical tradition, but also by rejecting excessive, outmoded
epistemological claims about mathematical axioms and proofs,

Teun Koctsier's contribution *Lakates, Lakoff and Ninez: Towarnds a Satisfactory
Definition of Continuiry™ aims o integrare Lakatos® logic and methodology of
mathematics, as highlighted in his famous Proofy and Refitations, and Lakofl and
MNiinez's theory of metaphorical thinking in mathematics. To do this, Koetsier introduces
the evolution of the concept of continuity from Euclid w0 the late nineteenth century
as i case smdy. He argues thar this development can be understood as a successive
rranslformation of conceptual metaphors which siarts from the “Euclidean Metaphor™
of geometry and ends (via Leibniz, Evler, Lagrange, Encontre, Cauchy, Heine and
Dedekind) in a quite modern, though seemingly (also) metaphorical treatment of
the intermedizte-value principle of analysis. In this case study, Koetsier conventionally
presents mathematics as a system of conceplual metaphors in LakolT & Nince's
sense. At the same time, he proposes o Lakatosian interplay of analysis and synthesis
as a motor of system-transformations and as a warrantor of mathematical progress:
Conjectures are turned into propositions and are ( Later) rejected by means of analysis
and synthesis. The subsequent application of these methods leads 10 a continued
elaboration and  refinement  of  mathematical concepts  (metaphors?)  and
technigues.

Mary Leng's paper “Pre-Axiomatic Mathematical Reasoning: An Algebraic
Approach” 1akes a different position with respect 10 mathematical proof and
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mathematical theorizing in general. Following G. Hellman's terminclogy, Leng
introduces an “algebraic approsch™ in a partly metaphorical manner in order to
characterize the view that axioms relate 10 mathematical objects analogously o
how algebraic eguations with unknown variables relate o their solutions (which
may form different, varied systems). Leng contrasts this approach, which comes
close to Hilbert's, with the “assertory™ approach of Frege and others, which holds
that axioms are asserions of wruths about a particular set of objects given indepen-
dently of the axioms. Leng gives an sccount of the pros and cons of both views with
respect o the truth of axioms in general and o the reference of mathematical
propositions. She pays special attention to the fact that a lot of “pre-axiomatised”
mathematics is done: namely, mathematics that apparently refers to well-estab-
lished mathematical objects not “given™ by formal axioms. Leng defends a “liberal™
algebraic view which can deal with pre-axiomatic mathematical theorizing without
getting caught in the traps of traditional “algebraic™ and “assertory™ upprosches o
axiomatisation.

Thomus Momann’s “Completions, Constructions and Corrollaries™ brings a
“Kantian™ perspective (o mathematical proof and 1o the general formation and
development of muthematical concepts. Momnunn focuses on Cassirer’s theory of
idealization in relation to Kam's theory of nteition as well as 1o Peirce’s so-called
“theorematic reasoming.” First, he outhnes Kant's wnderstanding of intuition in
mathematics and its main function — controlling mathematical proofs by construc-
tive step-by-step checks. Then, he presents Russell’s logicism as the “anti-intuitive™
opponent of the Kantian philosophy of mathematics. Despite this antagonism,
Mormmann posits that both positions argucd for a [ixed, siable famework for math-
ematics, rooted in intuition or relational logic respectively. In his reconstruction,
Mormiann considers Cassirer’s “critical idealism™ as a sublime synthesis of both
precursors, which eliminates the sharp philosophical separation between mathemartics
and the empirical sciences: Cassirer’s concept of idealization is an “overarching™
principle, being effective in both mathem:tics and the empirical sciences, Further,
Mormmann argues, this procedure of idealization 15 basic for some “completions™ in
mathematics (like Hilbert's principle of continuiry) which are not secured by a
purcly logical approach. Mormann presents Peirce’s “theorematic reasoning™ as a
kind of complement in order to make Cassirer’s completions work in mathematical
practice. The “common denominator™ of both approaches, according to Mormann,
is a shift in the general understanding of philosophy of mathematics: lts main task
is no longer w provide unshakable foundations for mathematics and science bul W
analyze the formation and transformation of general concepis and their functions in
mathematical and scientific practice.

Brandon Larvor's contribution “Awtharitarian vs. Autharitative Teaching: Polya
and Lakatos™ endeavors 10 understand and compare the two mathematicians® theo-
rics of mathematical education arising from their (common) “Hungarian™ mathe-
matical tradition that started with L. Fejer. Larvor shows that Lakatos® “critical™
and “heuristic™ approach to teaching, which later culminates in his Proofs and
RBefutations, is already present in his early statements on the role of education and
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science and might have been shaped by his mathematical teacher Sandor Kardcsony.
Lakatos™ “egalitarian™ understanding of teaching mathematics is rooted in a
political distaste for authoritarianism. His appreciation of heuristic proofs at the
expense of deductive proofs is perhaps the most visible result of this distaste.
According 1w Larvor, however, Lakatos failed to develop a useful pedagogical
moddel that takes into account the basic faet that students and teachers are not equal
dialog partners, Polya, on the other hand, stressed carlier than Lakatos the distine-
tion between deductive and heuristic presentations of muthematics and made
explicit the “shaping™ lunction of heuristics in mathematical proof., Contrary o
Lakatos, he develops a model of teaching mathematics; his model is not egalitarian,
but aims at a kind of “mathematical empathy” in the relation of experienced eacher
and leamming student. Polya also rejects mathematical fallibilism, which is important
for Lakawos® philesophy of mathematics. Though both thinkers share importamt
insights into the teaching of mathematics, Lukatos® understunding might he
described as anti-authoritative, while Polya’s can be described as “authoritative,”
though not as “authontanan.”

Gila Hanna's and Cd Barbeaw's paper “Proofs as Bearers of Mathematical
Knowledge™ extends Yehods Rav's thesis thal mathematical proafs (rather than
theorems) should be the main focus of mathematical interest: They are the primary
bearers of mathematical knowledge, 11 this knowledge 15 not restricted o resulis
and their truth but is understood as the ability o apply methods, waols, sirategies
and concepts. In the first part of the paper. Hanna and Barbeaw present and analyze
Rav’s thesis and its further development in its original context of mathematical
practice. Here, informal proofs — “conceptual prools™ instead of formal dervations
= dominate mathematical argumentation and are of special importance. Among
other arguments, Rav's thesis gains considerable support from the fact that mathe-
matical theorems often are re-proven differently (J. W, Dawson). even if their
“truth=prescrving™ function is beyond doubl. The second part of the paper aims at
a desideratum of mathematical eduecation in applying and transforming Rav's
congept of proof o wackhing mathematics, With special reference o detailed analysis
of two case studies from algebra and geometry, Hanna and Barbean argue thar
conceplual proofs deserve a major rele in advanced mathematical education,
beciaunse they are of primary importance for the teaching of methods and strategies,
This kind of waching proofs is not meant as a challenge 1w “Euclidean™ proofs in
the classroom but as a complement which broadens the view of mathemartical proof
and the nature of mathematics in general.

Aiso Heinze's “Mathematicians” Individual Criteria for Accepting Theorems
and Proofs: An Empirical Approach™ enlarges and concludes the “Refllections™ of
Part | through an empirical study on the working mathematician’s views on proof,
When is the mathematical community prepared 1o accepl a proposed proof as such?
The social processes and criteria of evaluation involved in answering this guestion
are at the core of Heinze's explorative (though not representative) empirical inves-
tigation, which surveyed 40 mathematicians from southern Germany. The survey
questions referred 10 a couple of possible criteria for the individual acceplance of
proofs which belong to the participants” own research areas, o other research areas
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or to part of a research article which has to be reviewed. Some of the findings are
hardly astonishing - a trust in peer-review processes and in the judgment of the
larger mathematical community — but also the personal checking of a proof in some
detail plays a major role. Particularly, senior mathematicians frequently do not
automatically accept “second-hand™ checks as correct. Apparently, a skeptical and
individualistic attitude within the mathematical community goes hand in hand with
the epistemological fact that a deeper understanding of proven theorems needs
a reconstruction of the proof-process itself. Due to the lack of further empirical
data, however, these and other conjectures are open o further discussion and
]'I'I\'L"!i.l‘lgj.ﬁllll'l.

Part I1 of the book, “Proof and cognitive development,” consists of four papers,
The tirst two investigate promising theoretical frameworks, whereas the last two use
a well-established Vygotskian framework 1o examine results of empirical research.

In “Bridging Knowing and Proving in Mathematics: A Didactical Perspective,”
Nicolas Balacheff begins by identifying two didactical gaps that confront new
secondury school students. First, they have not yet leamed that proof in mathematics
is very different from what counts as evidence in other disciplines. including the
physical sciences. Second, they have studied mathemtics for years without being
teld about mathematical proof, but as soon as they get 10 secondary school they are
abruptly introduced o prool as an essential part of mathematics and fAind themselves
having 1o cope with understanding and constructing mathematical proofs.

Thiese gaps make the weaching of mathematics difficult; in BalachelT's view, they
point to the need 10 examine the teaching and learning of mathematical proof as a
“mastery of the relationships among knowing, representing and proving mathemali-
cally.”” The bulk of his paper is devoted to developing a framework for understanding
the didactical complexity of learning and waching mathematical prool, in paricular
for analyzing the gap between knowing mathemarics and proving in mathemarics.

Secking such a Mramework, BalachelT characterizes the relationship between
proof and explanation quite differently from mest contemporary philosophers of
mathematics, who discuss the explanatory power of proofs on the premise that
not all mathemarical proofs explain and not all mathemarical explanations are
proofs. Balachell, however, states thal a prool is an explanation by virtue of
being a proof.

He sees a prool as starting out as a text (a candidate-prool) that goes through
three stages. In the first stage, the text is meant 1o be an explanation. In the second
stage. this text (explanation) undergoes a process of validation {an appropriate
community regards that text as a proof). Finally, in the third stage the text {now
considered a prool by the appropriate community) is judged 10 meet the current
standards of mathematical practice and thus becomes a legitimate mathematical
prool. As Balachell"s Venn diagram shows, a prool 15 embedded in the class of
explanation, that is, “mathematical proof o prool < explanation.” BalachefT then
arrives at a framework with three components: (1) action, (2) formulation { semiotie
system), and (3) validation {(control structure). He concludes that “This trilogy,
which defines a conception, also shapes didactical situations; there is no validation
possible if & claim has not been explicitly expressed and shared; and there is no
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representation withoul a semantic which emerges from the activity (i.e., from the
interaction of the learner with the mathematical milien).”

In “The Long-term Cognitive Developient of Reasoning and Proafl” David Tall and
Juan Pablo Mejia-Ramos use Talls model of “three worlds of mathemetics™ w discuss
aspects of cognitive development in mathematical thinking. In his previous research,
Teall investi gated for more than 30 yesirs how children come to understand mathematies,
His results, published in several scholarly journals, led him 1o define “three worlds
of mathematics™ — three ways in which individuals operate when faced with new
learning tasks: (1) conceptual-embodied (using physical, visual and other senses);
(2} proceptual-symbolic (using mathemutical symbaols as both processes and concepts,
thus the term “procept™), and (3) axiomatic-formal (using formal mathematics),

Tall and Mejia-Ramos examine the difficult transition experienced by university
students, from somewhat informal reasoning in school mathematics o proving
within the formal theory of muthematics. Using Tall’s “three worlds™ model in
combination with Toulmin’s theory of argumentation, they describe how the three
worlds overlap to g certain degree and are also interdependent. The first two worlds,
those of embodiment and symbolism. do act as a foundation for progress wwards
the axiomatic-formal world. But the third, axiomatic-formal, world alse sels as a
foundation for the first two worlds, in that it often leads back 10 new and different
worlds of cmbodiment and symbolism,

Tall and Mejia-Ramos argue thar an understanding of formalization is insuffi-
cient W understand proof, since they have shown “how not only does embodiment
and symbolism lead inte formal proof, but how structure theorems return us 1o more
powerlul forms of embodiment and symbolism that can support the quest lor fur-
ther development of ideas.”

The next two papers, “Historical Ariefacts, Semiotic Mediation, and Teaching
Proof” by Marolina Bartolini-Bussi, and “Proofs, Semiotics and Artefacts of
Information Technologies™ by Alessandra Marioili, also investigate the cognilive
challenges in teaching and learning proot, but they do not aim at analyzing existing
theoretical frameworks or developing new ones. Rather, they both use Vygotsky's
framework, the hasic assumptions of which are that the individual mind is an active
participant in cognilion and that learning is an essentially social process with a
semiotic character, requiring interpretation and reconstruction of communication
signs and arelacts. A key point of Vygowsky's theory is the need lor mediation
hetween the individual mind and the external social world. Bartolini-Bussi and
Mariotli both explore the wse of anefacts in the mathematics classroom and try 1o
understand how these artefacts act as o means of mediation and how their use
cnables students 10 make sense of new learning tasks.

Bartolini-Bussi examines concrete physical artefacts: a pair of gear wheels
meshed so that turning one cawses the other 10 turn in the opposite direction, and
mechanical devices for constructing parabolas. In the case of the gear wheels, the
use of a concrele artefact proved o be helplul, in that students did come up with a
postulate and a conviction that their postulate would be validated. In addition, the
use the arefact seemed to have fostered a semiotic activity thal encouraged
the students to reason more theoretically about the functioning of gears.



I Introduction 9

In the case of the mechanical devices for constructing parabolas, Bartolini-Bussi
notes that these concrete artefacts offered several advantages: (1) a context for
historical reconstruction, for dynamic exploration and for the production of a
conjecture, (2) continuous support during the construction of a proof framed by
clementary geometry, and (3) a demonstration of the geometrical meaning of the
parameter “p” that appears in the conic equation.

Marioti examines two information technology anefacts: Cabri-gdométre, a
dynamic geometry program, and L°Algebrista, a symbolic manipulation program.
She uses the semiotic character of these specific artefacts e help students approach
issues of validation and to teach mathematical proof. Mariott gives an example of
how the use of the Dynamic Geometry Environment artefact, Cabri-géoméire,
carries semiotic potential and thus is useful a tool in teaching proof, This artefact
enabled tw teachers w siructure classroom activities whereby students were
engaged in (1) the production of a Cabei lgure corresponding to o geometric figuree,
i2) a description of the procedure used to obtain the Cabei figure, and (3) a justifi-
=ation of the “correciness™ of the comstruction. A second example, concerning the
teaching of algebraic theory, uses a symbolic manipulator, L'Algebrista, as an are-
fael. Again, this artefaet allowed g restructuring of classroom activities Uil enabled
teachers to increase mathematical meanings for their students.

These two papers lend support o the idea that semiotic mediators in the form of
artefacts, whether physical or derived from information technology, can be used
successfully in the classroom at both the clementary and the secondary levels, not
only 10 teach mathematics but to help students vnderstand how one arrives at
mathematical validation.

Part 11, “Experiments, Diagrams and Proofs,” amalyvzes the phenomenon of
prool by considering the interaction between processes and products. The First
essiy in this part, by a philosopher of mathematics, sets the stage with a fresh view
of Willgenstein's ideas on proel. Two essays on educalional issues [ollow, which
put proof in the broader context of experimentation and problem solving, Part 111 is
completed by two historical case studics relating the process of proving 1o the way
a proof is written down.

In “Prool” ax Experiment in Wingenstein,” Allred MNordmann reconstructs
Wittgenstein's philosophy of mathematical proof as a complementarity between
“proof as picture” and “proof as experiment.” The perspectives designated by these
two concepts are quite different; conseguently, philosophers have produced bewil-
deringly different interpretations of Wittgenstein's approach. Using the concept of
“complementarity,” Nordmann invites the reader o consider these two perspectives
as necessarily related, thus reconciling the seemingly divergent interpretations,
However, he leaves open the question of whether every proof can be considered in
both these ways.

“Proof as picture™ refers 1o a proof as a written product. For Wittgenstein, it is
exemplified by a calculation as it appears on a sheet of paper. Such a calculation
comprises, line-by-line, the steps which lead from the initial assumptions to the
final result. It shows two features: [t is (1) surveyable and (2) reproducible.
On the one hand, only the proof as a surveyahle whole can tell us whet was proved.
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On the other hand, the proof can also be reproduced “with cenainty in its entirery™
like copying a picture wholesale and “once and for all.”

“Proof as experiment” relates 1o the productive and creative aspects of proof, In
an analogy to scientific experiments, the term refers to the experience of undergoing
the proof. Wingenstein's paradigm case for this view is the reductio ad absurdum
or negative proof. In this case, a proot does not add a conclusion to the premises
but it changes the domain of what is imaginable by rejecting one of the premises,
Hence, poing throogh the proof involves us in 4 process at the end of which we
see things dilferently. For example, proving that trisection of an angle by ruler
and compass is impossible changes our idea of trisection itself. The proof allows
us to shift from an old to a new state, from a wrong way of secing the world 1o a
right one.

Mordmann argues that the opposition between piclures and experiments
clucidates what is vaguely designated by opposing static vs. dynamic, synchronic
vs. diachronic, and justificatory vs. exploratory aspecis of proof. Proof as picture
and proof @s experiment are two ways of considering proof rather than two types of
proof. They cannot be distinguished as necessary on the one hand and empirical on
the other. The experiments of the mathematician and of the empirical scientist are
similar in that neither experimenter knows what the results will be, but differ in that
the mathematicians” experiment immediately yields a surveyable picture of itsclf,
so that showing something and showing its paradigmatic necessity can collapse into
a single step.

In “Experimentation and Proof in Mathemarics,” Michael de Villiers discusses
the substantial importance of experimentation for mathematical prool” and its
limitations. The paper rests on a wealth of historical examples and on cases from
de Villiers's personal mathematical expenence.

De Villiers groups his considerations around three basic subthemes: (1) the
relation between conjeciuring on the one hand and verification/conviction on
the other; (2) the role of refutations in the process of generating a (final) proof; and
(30 the imterplay between experimental and deductive phases in proving,

De Villiers writes that conjecturing a mathematical theorem often originates from
experimentation, numerical investigations and measurements. A prominent example
is Gauss’s 1792 formulation of the Prime Number Theorem, which Guauss based on
a great amount of numerical data. Hence, even in the absence of a rigorous prool of
the theorem, mathematicians were convinced of its truth. Only at the end of the
nineteenth century was an actual prool produced that was generally accepled.

Hence, conviction often precedes proof and is, in fact, a prereguisite for seeking
a prool. Experimental evidence and conviction play a lundamental role. On the
other hand, this is not true in every case. Sometimes it might be more efficient to
look for a direct argument in order o solve a problem rather than trving a great
number of special cases.

The role of refutations in the genesis of theorems and proofs, be they global or
hewristic, is a typical Lakatosian motive. De Villiers gives several examples and
shows that the study of special cases and the search for counter-examples, even
after a theorem has been proved, are frequently very efficient in arriving at a final,
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mature formulation of a theorem and its proof. Thus, this strategy belongs to the
top=level methods of mathematical research and should be explicitly treated in
the classroom, In this context, de Villiers argues against a radical fallibilist philosophy
of mathematics by making clear that its implicit assumption that the process of
proof and refutations can carry on infinitely is erroneous.

Finally, de Villiers analyses the complementary interplay between mathematical
experimentation and deduction, citing several thoughi-provoking examples.

In “Progf, Mathematical Problem-Solving, and Explanation in Mathemaiics
Teaching.” Kazuhike Nunokawa discusses the relation between proof and exploration
by analyzing concrete processes of problem solving and proof generation which he
observed with students. The paper focuses on the relationships among the problem
solvers” explorations, constructions of explamstions and generations of understand-
ing. These three mental activities are inseparably inlenwined. Explorations facilitale
understanding., but the converse is also true. Exploration is guided by understanding
and previously generated (personal) explamations. Problem solvers use implicit
assurnptions that direct therr explomative actvibes. They envisage prospective explia-
nations, which in the process of exploration become real explanations (or not). An
especially interesting feature of the processes of exploration and explanation is the
generation of new objects of thought, a process of abstraction which eliminates
nonessentizl conditioms, leads o a generalization of the situation at hand and opens
the eyes to new phenomena and theorems.

A central theme for Nunokawa is the fundamental role of dizgrams and their
stepwise modification in the observed problem-solving processes. Hence, at the end
of his paper, Nunokawa rightly remarks that most teachers have the (bad) habil 1o
present so-to-speak final versions of diagrams to their students, whereas it would
be much more important and 1cachable “wo investigate how the final versions can
emerge through interactions between explorations and understandings and what
roles the immature versions of diagrams play in that process.”

Evelyne Barbin's paper “Evolving Geometric Proofs in the I7th Century: From
feons to Symbofs™ 15 the first of two historical case studies that conclude the
volume. The wider context of her study is a reform or ransformation of elemen-
tary geomelry which ook place in the course of the scientific revolution of
the seventeenth century and might be termed “arithmetization of peometry.” In the
seventeenth century, a widespread anti-Euchidean movement eriticized Euclid's
Elements as aiming more at certainty than at evidence and as presenting mathe-
matical statements not in their “natwral order”™ Hence, some mathematicians
worked on a reform of elementary geometry and tried to organize the theory in
a way that not only convinced but enlightened. Two of them, Antoine Arnauld and
Bernard Lamy, wrote textbooks on elementary geometry in the second half of the
seventeenth century.

Barbin analvses and compares five different proofs of a certain theorem on
proporiions: two anciend proofs by Eueclid and three proofs from the seventeenth
century by Amauld and Lamy. In the modemn view, the theorem consists of a simple rule
for calculating with proportions, which says that in a proportion the product of the
middle members is equal 1w the product of the external members. In her analysis, Barbin
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follows a rigorous method, making one of the rare and successful attempts w apply
Charles Sanders Peirce’s semiotic terminology to concrete mathematical texts,
Barbin explains Peirces concepts of symbol, diagram, icon, index and representation
and applies them o the different proofs. Thus, she consistently elucidates the
proofs’ differences and specificities of style. The result of this analysis is that
the seventeenth century authors not only produced new proofs of an ancient
theorem but brought about a new conception or style of proof,

In “Proof in the Wording: Two Modalities from Ancient Chinese Algorithms,”
Karine Chemla analyses the methods that early Chinese mathematicians used for
proving the correctness of algorithms they had developed. The manuseripts she
considers were in part recovered through excavations of tombs in the twentieth
century; others have come down to us via the written tradition of Chinese muthe-
matics. These manuscripts contain mainly algorithms; thus, it is a [undamental
issue whether they contain arguments in favor of the algorithms” correctness and,
if 5o, how these argumemnts are presented. Hence, in Chinese mathematics proof
apparently tukes a form distinctly different from the Western tradition. Nevertheless,
there are certain points of similarity: Some parts of Western mathematics. for
example in the seventeenth century, dre presented as problems and algorithms for
their solution.

In her analysis, Chemla uses a specific framework, o take into account that on
the one hand most of the algorithms presuppose and refer o certain material caleu-
lating devices. Thus, it is an important guestion whether the algorithms present
the operations step by step in regard 1o the calculating device. On the other hand,
she has to consider in general how detailed the description of an algorithm is; thus,
she writes of the “grain of the description.” One of her most important results is her
finding that proofs for the comrectness of an algorithm are mainly given by way of
semantics: that is, the Chinese authors often very carefully designared the meaning
of the magniludes calculated al cach step in the course of an algorithm. In addition,
the Chinese mathematicians might use a “coarser grain”™ of description — collapsing
certain standard procedurcs — or change the order of operations in order w0 enhance
the mransparency of & proof.

Both these historical case studies show convincingly that prool and how it is
represented strongly depend on the “diagrams” available in o certuin culture and at
a certain time.

In eonclusion, we trust that this volume shows that much can be learned from an
interdisciplinary approach bringing together perspectives from the fields of mathematics
education, philosophy of mathematics, and history of mathematics. We also hope
that the ideas embodied in this collection of papers will enrich the ongoing
discussion about the status and function of proof in mathematics and its teaching,
and will stimulate future cooperation among mathematical educators, philosophers
and historians.
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