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C. G. J. Jacobi in his Lectures on Analytical Mechanics (Berlin, 1847–1848) gives a detailed
and critical discussion of Lagrange’s mechanics. Lagrange’s view that mechanics could be
pursued as an axiomatic-deductive science forms the center of Jacobi’s criticism and is rejected
on mathematical and philosophical grounds. In this paper, Jacobi’s arguments are presented
and analyzed. It is shown that Jacobi’s criticism is motivated by a changed evaluation of the
role of mathematics in the empirical sciences. This change is interpreted as a process of
dissolution of Euclideanism (in the sense of Lakatos) that dominated theoretical mechanics
up to Jacobi as the leading ideal of science.  1998 Academic Press

In seinen Vorlesungen über analytische Mechanik (Berlin, 1847–1848) setzt sich C. G. J.
Jacobi ausführlich und kritisch mit Lagranges Mechanik auseinander. Im Mittelpunkt der
Kritik steht dabei Lagranges Auffassung, Mechanik könne als eine axiomatisch-deduktive
Wissenschaft betrieben werden. Diese Auffassung wird von Jacobi aus mathematischen und
philosophischen Gründen zurückgewiesen. Im vorliegenden Aufsatz werden Jacobis Argu-
mente dargestellt und analysiert. Es wird gezeigt, dab seine Kritik auf einer veränderten
Beurteilung der Rolle der Mathematik in den empirischen Wissenschaften beruht. Diese
Veränderung wird als Prozeb der Auflösung des Euklidianismus (im Sinne von Lakatos)
als leitendem Wissenschaftsideal der theoretischen Mechanik bis hin zu Jacobi
interpretiert.  1998 Academic Press

Dans son Cours de Mécanique analytique (Berlin, 1847–1848), C. G. J. Jacobi présente une
discussion détaillée et critique de la mécanique de Lagrange. La critique de Jacobi concerne
avant tout la conception de la mécanique comme science axiomatique et déductive défendue
par Lagrange. Il rejette cette conception pour des raisons mathématiques et philosophiques.
Dans cet article seront présentés et analysés les différents arguments de Jacobi, démontrant
que sa critique est fondée sur un changement d’appréciation de la fonction de la mathématique
dans les sciences empiriques. La position nouvelle de Jacobi sera interprétée comme consé-
quence de l’élimination de l’Euclidianisme (dans le sens de Lakatos), le prototype scientifique
de la mécanique rationnelle jusqu’à Jacobi.  1998 Academic Press
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INTRODUCTION

[Lagrange’s] Analytical Mechanics is actually a book you have to be rather cautious about, as
some of its content is of a more supernatural character than based on strict demonstration.
You therefore have to be prudent about it, if you don’t want to be deceived or come to the
delusive belief that something is proved, which is [actually] not. There are only a few points,
which do not imply major difficulties; I had students, who understood the mécanique analytique
better than I did, but sometimes it is not a good sign, if you understand something. [28, 29]
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Carl Gustav Jacob Jacobi (1804–1851) gave this warning to his students in the
Vorlesungen über analytische Mechanik, which he delivered in Berlin in 1847–1848.
This series of lectures is not only his last major contribution to the subject, it has
to be considered the most detailed and authentic source of his later views on the
foundations of mechanics [58]. As it shows important differences from the well-
known Vorlesungen über Dynamik from 1842 to 1843 [26], which has hitherto been
regarded as the most comprehensive and reliable source in this respect, the recent
publication of the Analytische Mechanik [28] might suggest a new image of Jacobi’s
role in the history and philosophy of mechanics.

Without doubt, this will prove correct about the relation of Jacobi’s and La-
grange’s mechanics. In light of Jacobi’s older papers and lectures, his above-quoted
criticism is quite remarkable: Hamilton and Jacobi were said to be the most success-
ful mathematicians in the first half of the 19th century who developed mechanics
along ‘‘Lagrangian lines.’’ When Hamilton called Lagrange’s Méchanique analitique
‘‘a kind of scientific poem’’ [24, 104], he implied that he himself added some new
‘‘stanzas’’ to the very same poem. More specifically, when Jacobi called Lagrange’s
famous textbook a successful attempt ‘‘to set up and transform’’ [26, 1] the differen-
tial equations of motion, he implied that Hamilton’s and his own contributions
should be regarded as a necessary and sufficient complement to this attempt, as
they provided the means for integrating those equations. The Hamilton–Jacobi
theory can be seen as a logical consequence of Lagrange’s approach. Felix Klein
was thus quite right when he said that ‘‘Jacobi’s extension of mechanics is essential
with respect to its analytical side’’ [30, 203] and that it had to be criticized for its
lack of physical relevance [30, 206–207].

This view, however, can no longer be accepted, if Jacobi’s Analytische Mechanik
is taken into account. This paper aims to show, on the basis of this source, that the
essence of ‘‘analytical mechanics’’ in the sense of Lagrange is undermined by
Jacobi’s criticism. In the first two parts, I will outline Lagrange’s understanding of
analytical mechanics and show that this understanding leads to serious foundational
problems. Then I will sketch Jacobi’s changing attitude toward mathematical phys-
ics, without which the Analytische Mechanik can hardly be understood. In the fourth
and fifth part, I will present what can be called the hard core of Jacobi’s criticism,
i.e., his analysis of Lagrange’s two so-called ‘‘demonstrations’’ of the principle of
virtual velocities. In the sixth part, I will argue that Jacobi’s criticism is substantially
due to a changed attitude toward the role of mathematics in mechanics, and I will
outline the philosophical relevance of this shift.

1. MECHANICAL EUCLIDEANISM AND MATHEMATICAL
INSTRUMENTALISM: TRADITION AND MODERNISM IN

LAGRANGE’S ANALYTICAL MECHANICS

Clifford Truesdell has aptly described Lagrange’s Méchanique analitique as an
attempt to organize 17th- and 18th-century rational mechanics using new mathemati-
cal techniques. Starting with the principle of virtual velocities, the whole of dynamics
and statics is presented in a deductive manner, thus clarifying the logical relations
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of its so-called ‘‘principles’’ without creating new mechanical concepts and without
increasing its empirical content [62, 32–35]. This description is correct but rather
incomplete. Due to Truesdell’s notorious fixation on mathematics alone and his lack
of philosophical interest [62, 11], it takes into account neither important elements of
continuity nor a genuinely new element in Lagrange’s mechanics.

There is a continuity in Lagrange’s attempt to present mechanics as an axiomatic
science; he starts from a seemingly evident, general, and certain principle and
develops it in a deductive manner with a minimum of further assumptions. As he
put it, he ‘‘intended to reduce the theory of this science, and the art of resolving
the problems which are related to it, to general formulas’’ [33, v]. This remark
should not, however, be understood as an announcement of an abstract theory of
mathematical physics in a modern sense, i.e., of an uninterpreted mathematical
model that can be shown to be in partial agreement with physical reality. Rather,
it should be viewed as an expression of his belief in an intrinsic mathematical
structure of nature itself. His bold claim to make mechanics ‘‘a new branch’’ of
analysis [33, vi] is rooted in his conviction that the calculus is appropriate for
uncovering the essential laws of nature and their logical relations.

With the advantage of hindsight, we cannot but describe Lagrange’s program as
an ‘‘overambitious exercise’’ [22, 325], but it is important to be aware of the fact
that the decisive characteristics of his ideal of mechanics have a long history.
Even his immediate predecessors in the analytical tradition of mechanics—Euler,
d’Alembert, and Maupertuis—adhered to the same belief in a mathematically
structured reality and in the capability of the human mind to condense this reality
into a deductive symbolical structure with only a few first, indisputable principles.
This belief is, above all, inherited from Cartesian philosophy with its ideas of
‘‘clarity’’ and ‘‘simplicity,’’ as several investigations of their philosophies of science
have shown [16; 25; 55].

Lagrange’s image of science, however, is not specific to the rationalistic tradition.
The ideal of a deductively structured mechanics with certain, general, and evident
principles or ‘‘axioms’’ at the top can also be found in the more empirical Newtonian
program and in early 19th-century French positivism [16]. D’Alembert is particularly
interesting in this respect because he influenced Lagrange’s ideal of mechanics more
than any other scientist or philosopher. He declared himself an empiricist, but his
philosophical statements about mechanics show not even the slightest trace of a
Humean skepticism concerning the capacities of mathematical physics to reveal the
real laws of nature [25, 151–169].

I will use Lakatos’s term Euclideanism to label rational mechanics as it was
pursued by d’Alembert, Lagrange, and most1 of the other 18th- and early 19th-
century mathematicians, physicists, and philosophers. This notion seems to me
particularly appropriate for Lagrange for three reasons.

First, it expresses the view that the ‘‘ideal theory is a deductive system with an

1 A remarkable, though not very influential exception is Lazare Carnot [7]; see Gillispie [18, 31–100]
for a detailed analysis of his mechanics.
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indubitable truth-injection at the top (a finite conjunction of axioms)—so that truth,
flowing down from the top through the safe truth-preserving channels of valid
inferences, inundates the whole system’’ [40, 2: 28]. Its basic aim ‘‘is to search for
self-evident axioms—Euclidian [!] methodology is puritanical, antispeculative’’ [40,
2: 29]. Lagrange’s analytical mechanics fulfills this definition very well. As he claimed
that statics and dynamics can be based on one (and only one) ‘‘fundamental princi-
ple’’ [33, 8], and as he elaborated this mononomism more successfully than any of
his predecessors, we can characterize the Méchanique analitique as the most articu-
lated form of mechanical Euclideanism in 18th-century rational mechanics.

Second, Euclideanism is an epistemologically neutral label, i.e., it includes both
empirical and rationalistic foundations of the science in question.2 For mechanics
this means that it includes theories whose first principles are allegedly revealed by
‘‘the light of reason’’ (Descartes) as well as theories whose first principles are
allegedly ‘‘deduced from phenomena’’ (Newton). Both kinds of justifications can
be found in 18th-century mechanics, and in many textbooks they are inseparably
interwoven. Lagrange’s position in this respect is by no means clear, either, though
he sometimes shows a critical attitude toward metaphysical arguments for first laws
which can be interpreted as a commitment to empiricism (e.g., [55, 187–189]).
Lagrange is only one example (though a good one) to illustrate the more general
historiographical thesis that the decisive philosophical feature of rational mechanics
at this time cannot be understood in terms of the dichotomy ‘‘rationalism–
empiricism.’’ This epistemological pattern is inappropriate to grasp the development
of mechanics into a highly organized body of knowledge. Largely independent of
epistemological fixations, it is probably the search for certain, evident, and general
first principles and for suitable procedures of deductive inference with the overall
aim of arriving at (possibly all) valid special laws, which characterizes mechanics
at the time in question.

Third, Lakatos’s label makes explicit that Euclidean geometry served as the
model-science for mechanics. It was Lagrange who in his Théorie des fonctions
analytiques described ‘‘mechanics as a geometry with four dimensions’’ (including
time as the fourth dimension) and the ‘‘analysis of mechanics as an extension of
geometrical analysis’’ [37, 337]. These words clearly express his view that all relevant
mechanical knowledge can be brought under an axiomatic-deductive structure and
that it possesses the same distinctive characteristic as any mathematical knowl-
edge: infallibility.

So far I have presented Lagrange’s Méchanique analitique in the tradition of

2 Lakatos makes clear that the dichotomy ‘‘Euclidian–Empiricist’’ (or later: ‘‘Euclidian–Quasi-empiri-
cal’’) applies to whole theories, while single propositions are traditionally qualified as ‘‘a priori–a posteri-
ori’’ or ‘‘analytic–synthetic’’: ‘‘. . . epistemologists were slow to notice the emergence of highly organized
knowledge, and the decisive role played by the specific patterns of this organization’’ [40, 2: 6]. This
holds true especially for mechanics. The traditional empirical–rationalistic dichotomy conceals the
common basis of infallibility and is not very useful historiographically [40, 2: 70–103]. It should be
mentioned that Lakatos himself subsumes Lagrange and other mathematicians of the 18th century under
‘‘Rubber-Euclidianism’’ [40, 2: 7, 9]. I shall come back to the (dis-)qualifier ‘‘Rubber’’ later.
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18th-century rational mechanics. His famous and already mentioned claim, however,
to give a purely analytical theory of mechanics, marks in a certain and unnoticed
sense a break with this tradition. Lagrange’s claim is generally understood as a
rejection of all geometrical means, ‘‘that no figures are to be found in this book’’
[39, vi], as he himself emphasizes. This reading suggests itself and is correct, though
we know today that it applies more to Lagrange’s presentation and justification of
mechanical propositions than to their invention or discovery [20, 679]. The tasks
of ‘‘reducing’’ mechanics to the calculus and the calculus to a sound algebraical
basis are, in his program, complementary in order to reach a secure foundation of
the whole of mechanics [19, 7–10].

But another interpretation of Lagrange’s claim can be added to this, and this
seems to me of equal importance. Restricting mechanics exclusively to the methods
of analysis implies dispensing not only with other mathematical methods (and even
with ‘‘mechanical considerations’’ [39, vi]) but also with extramathematical methods.
Indeed, Lagrange’s Méchanique analitique is the first major textbook in the history
of mechanics that I know of which abandons any kind of explicit philosophical
reflection. It says nothing about how space, time, mass, force (in Newton’s sense),
or vis viva (in Leibniz’s sense) are to be established as basic concepts of mechanics,
nor about how a deductive mathematical theory on that basis is possible. Neither
are the metaphysical premises of his mechanics made explicit, nor is there any
epistemological justification given for the presumed infallible character of the basic
principles of mechanics. This is in striking contrast not only to 17th-century founda-
tions of mechanics such as that of Descartes, Leibniz, and Newton but also to the
approaches of Lagrange’s immediate predecessors, Euler, Maupertuis, or d’Alem-
bert [55, 232–240]. In short, a century after Newton’s Principia, Lagrange’s textbook
can be seen as an attempt to update the mathematical principles of natural philoso-
phy while abandoning the traditional subjects of philosophia naturalis. In this special
sense, the Méchanique analitique is also a striking example of mathematical instru-
mentalism.

2. RUBBER EUCLIDEANISM: THE BASIC DILEMMA OF
LAGRANGE’S MECHANICS AND ITS RECEPTION

The combination of Lagrange’s new instrumentalism (with respect to philosophy
of nature) and old Euclideanism (with respect to philosophy of science) is the
decisive philosophical characteristic of Lagrange’s mechanics.3 On the one hand, it
made the Méchanique analitique a model of how mathematics should be used in

3 I have already applied the characterization ‘‘mathematical instrumentalism’’ to Lagrange’s mechanics
in [55, 238]. In order to avoid misunderstandings, I need to emphasize that ‘‘instrumentalism’’ here
refers rather to philosophy of nature (I1) than to philosophy of science (I2): Lagrange did not base his
mathematical formulation of mechanics on an analysis of the fundamental concepts of philosophy of
nature such as matter, force, space, and time, as did Descartes, Newton, Leibniz, d’Alembert, or Euler.
Instead, he chose the basic concepts and laws of his theory in a mathematically convenient manner.
This is what I call instrumentalism (I1). For example, Lagrange in his first papers introduced the principle
of least action as a ‘‘universal key to all problems,’’ which meant that he introduced potential and living
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physics; it is its advanced mathematical and antimetaphysical style which made
Lagrange’s textbook attractive for working mathematicians as well as for positivistic
philosophers such as Comte [16]. In my later discussion of Jacobi’s criticism, I will
refer to Lagrange’s textbook in this special sense, i.e., as the widely accepted best
realization of a purely mathematical Euclideanism in physics.

On the other hand, this combination bears a significant tension. Lagrange himself
was partly aware of it, and some of his successors in the French tradition of mathe-
matical physics were even more so: the conjunction of Euclideanism and instrumen-
talism suggests that the deductive chain can be started by first principles without
recourse to any kind of geometrical and physical intuition or metaphysical argu-
ments. This leads inevitably to a conflict with the traditional meaning of axiom as
a self-evident first proposition, which is neither provable nor in need of a proof.
Lagrange wanted to start with one principle, the principle of virtual velocities. In
order to achieve this aim, he had to formulate it in a fairly general and abstract
manner, using his calculus of variations. In the first edition of his Méchanique
analitique, he introduced this ‘‘very simple and very general’’ principle in statics as
‘‘a kind of axiom’’ [33, 12]. Lagrange appeased his tangible discomfort with the
word ‘‘axiom’’ by extensive references to its successful use by great authorities of
the past such as Galileo and Descartes [33, 8–12]. (The history of mechanics in
Lagrange’s textbook partly serves as a substitute for missing philosophical justifica-
tion.) In the second edition, he stuck to the word ‘‘axiom,’’ but had to admit that
his principle lacks one decisive characteristic of an axiom in the traditional meaning.
It is ‘‘not sufficiently evident to be established as a primordial principle’’ [39, 1:
23, 27].

Euclideanism demands evidence; instrumentalism tends to dissolve it. This is the
basic dilemma of Lagrange’s mechanics. It was probably brought to his attention in
1798 by Fourier [14; 9, 238], and his way out of it was the same as Fourier’s. In two
different so-called demonstrations from 1798 and 1813, he tried to prove his primor-
dial principle by referring to simple mechanical processes or machines [35; 37].

As will be shown later, Jacobi’s criticism from 1847 is primarily an analysis and
a rejection of these attempts to mediate evidence by supposed demonstrations, but

force as basic concepts of mechanics and gave an ‘‘adequate statement of the laws of a fairly extensive
branch of mechanics . . . without the use of an a priori concept of force’’ [62, 33] in Newton’s sense.
(The elimination of force meant nothing to him, however, despite the fact that there was an intense
philosophical discussion about this concept in 18th-century science and philosophy.) Later, he exchanged
the principle of least action for the principle of virtual velocities, because the latter had certain advantages
for a mathematical-deductive organization of mechanics [15, 233–234; 55, 258]. He thereby reintroduced
forces into his mathematical formalism without any discussion of this conceptual shift and without calling
into question the intrinsic nature of mechanical laws. This is an illustration of instrumentalism (I1). In
contrast, instrumentalism with respect to philosophy of science (I2) is characterized by the view that
the whole theory of mechanics or at least one of its principles is only a tool to describe and predict
phenomena without having a real content itself. In my opinion, a consistent instrumentalism (I1), which
is not supported by an adequate theory of representation (such as, for example, Heinrich Hertz’s
Bildtheorie), inevitably leads to (I2). Therefore the distinction of (I1) and (I2) is generally unnecessary,
but as Lagrange’s view is not consistent in this respect, it has to be kept in mind.
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it was by no means the only one. Lagrange’s formulation and (or) demonstration
of the principle of virtual velocities posed a challenge for a number of mathemati-
cians from Fourier (1798), de Prony (1798), Laplace (1799), L. Carnot (1803), and
Ampère (1806) to Cournot (1829), Gauss (1829), Poisson (1833), Ostrogradsky
(1835, 1838), and Poinsot (1806, 1838, 1846). They aimed at an extension of La-
grange’s principle, taking into account conditions of constraint given by inequalities
(Fourier, Cournot, Gauss, Ostrogradsky), and (or) at its better foundation. The
second aim was pursued either by demonstrations, which ‘‘reduced’’ the principle
of virtual velocities to that of the lever, to that of the composition of forces, or to
both (Fourier, de Prony, Laplace, Carnot, Ampère, Cournot, Poisson), or, finally,
by a quasi-geometrical analysis of the notions ‘‘mechanical system,’’ ‘‘force,’’ and
‘‘equilibrium,’’ leading to a general theorem which contains Lagrange’s principle
as ‘‘a simple corollary’’ (Poinsot) [49, 233].

These attempts reveal a ‘‘crisis of principles’’ [2, 7] caused by the Méchanique
analitique. As they are well documented in the literature, I shall not discuss any of
them at this point. Jacobi’s debt to the relevant papers will be dealt with later on.4

It must be stressed, however, that all these attempts aimed at better demonstrations,
giving the principle of virtual velocities a more secure foundation and making it
more evident. (Even Poinsot, who held that this principle was unnecessary for a
satisfactory deductive organization of mechanics, did not renounce the presentation
of a ‘‘clear and rigorous’’ demonstration [49, 216].) Like Lagrange, they applied
their refined logical and mathematical methods to mediate evidence to the principle
of virtual velocities. Lakatos aptly described such a position as ‘‘a sort of ‘rubber-
Euclidianism’’’ because it ‘‘stretches the boundaries of self-evidence.’’5

At first glance, Gauss seems to present an exception to this all-dominating rubber-
Euclideanism. In announcing his own principle of least constraint from 1829, he
explicitly stated that Lagrange’s formulation (i.e., the principle of virtual velocities
for statics in combination with d’Alembert’s principle) contains ‘‘in material re-
spect’’ all other fundamental principles of statics and dynamics and that therefore
‘‘no new principle of the doctrine of movement and equilibrium is possible’’ [17,

4 Jacobi obviously did not know the whole literature about the different demonstrations of the principle
of virtual velocities. Beside Lagrange, he also mentioned Fourier, Gauss, Ostrogradsky, and Poinsot
[14; 17; 45; 46; 47; 49], but not Ampère, Carnot, or Cournot. Lindt’s detailed study [41] from 1904 is
still an excellent presentation of the whole subject, but I refer also to [3, 95–115; 12, 361–369; 23, 1:
302–308] for general discussions and to [2] for Poinsot and [9] for Fourier.

5 See his [40, 2: 7]. Lakatos’s characterization is applicable even to those representatives of French
mathematical physics who criticized Lagrange’s mechanics for its lack of physical relevance. From
Duhem’s L’ évolution de la mécanique [13] to Grattan-Guinness’s Convolutions [23], it has been stressed
justly that the approaches of Laplace, Poisson, and their school are anti-Lagrangian in so far as they
revealed the shortcomings of Lagrange’s approach relative to concrete physical objects. Poisson therefore
called for a ‘‘physical mechanics’’ instead of Lagrange’s ‘‘analytical mechanics’’ [53, 361], where physical
mechanics should not deal with idealized mass points and rigid constraints but with real bodies underlying
certain physical actions. But, again, this criticism does not aim at Lagrange’s Euclideanism itself, but
at a more flexible handling of mathematics at a lower level, that is, with regard to its application to
special physical phenomena.
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232]. On the other hand, he remarked that ‘‘in the way it is expressed, it does not
exhibit immediately the credit of recommending itself as plausible’’ [17, 232–233].
Probably with these statements in mind, Jacobi referred to Gauss as someone who
held the opinion that the principle of virtual velocities ‘‘should be regarded as a
principle, which is not in need of a proof’’ [26, 15], and that introducing ‘‘something
conventional’’ into mechanics should be allowed [28, 10]. In this respect, Ernst
Mach’s interpretation of Gauss is also interesting. In his Science of Mechanics, he
criticized Euclideanism as ‘‘the mania for demonstration’’ [42, 72; cf. 40, 2: 7]. With
an odd reference to Jacobi’s first remark above, however, he excluded Gauss from
this criticism, claiming that he had ‘‘the right view of the principle of virtual displace-
ments’’—obviously, because this view was in agreement with Mach’s philosophical
position: ‘‘It is not possible to demonstrate mathematically, that nature has to be,
as it is’’ [42, 68].

It is true that Gauss did not add another mathematical demonstration of the
principle of virtual velocities to the literature. Nevertheless, both Mach’s and
Jacobi’s interpretations of his view missed the point. Gauss neither understood
first principles of mechanics as convenient tools for an economical description
of phenomena (Mach), nor did he want to introduce conventional elements into
mechanics (Jacobi). If we take Gauss’s thesis seriously, that no really new principle
can replace that of Lagrange, his principle of least constraint should be understood
as a different formal presentation of the old principle, which offers a ‘‘new advanta-
geous point of view, from which either this or that problem can be solved more
easily, or from which a special adequacy [Angemessenheit] is revealed’’ [17, 232].
The last point, itself, is revealing because at the end of his paper Gauss drew a
parallel between the modification of movement according to his principle of least
constraint ‘‘by nature’’ and the compensation of errors of measurement according
to his methods of least squares ‘‘by the calculating mathematician’’ [17, 235]. Here,
in this strongly anthropomorphic analogy, he found evidence and certainty which
he missed in Lagrange’s original formulation. Gauss is no exception to rubber-
Euclideanism, but he stretched the boundaries of evidence in a different direction.
Euclideanism continued to dominate rational mechanics. Fourier’s pseudo-Aristote-
lian motto of the very first paper, which was devoted to a criticism of Lagrange’s
principle, is characteristic of the whole tradition: ‘‘Geometrare est probare’’ [14, 20].

3. THE EDGE OF MECHANICAL EUCLIDEANISM: JACOBI’S VIEW OF
MATHEMATICS AND HIS CHANGING ATTITUDE TO

MATHEMATICAL PHYSICS

Jacobi was born in 1804 and started his university career around 1825, a dozen
years after Lagrange’s death [32]. From the very beginning of his career, he culti-
vated the role of a pure mathematician rather than that of a physico-mathematician,
which was typical of the then dominating French tradition [23]. His early attitude
to science can be seen as a result of neohumanism, a broad philosophical and
cultural movement with considerable impact on German mathematics. According
to this Weltanschauung, science and scientific education had ends in themselves.
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Mathematics especially should be regarded as an expression of pure intellectual
creativity and as a means of developing it further, needing no other justification
whatsoever. Applied or mixed mathematics, which was at the core of the French
tradition, was often hardly tolerated and was seen rather as a degradation than as
a legitimation of mathematics [31, 100–106].

In his early career, Jacobi was quite absorbed by this ideal of pure [reine] mathe-
matics. Proper mathematics in his sense is a product of the ‘‘inherent dynamism of
human spirit’’ [31, 112]; it neither depends on sense experience in any epistemologi-
cal respect, nor is it in need of external verification. Therefore, he was explicitly
hostile to French mathematical physics as it was practiced by Fourier, Laplace,
Poisson, and others [31, 106–109 and 114]. Criticized himself by Fourier, who could
see no practical use for Abel’s and Jacobi’s theory of elliptic functions, Jacobi gave
his famous reply: ‘‘A philosopher like him should have known that the unique aim
of science is the honor of human spirit’’ [5, 276].

Of course, Jacobi could not and did not ignore the success of mathematics in
physics, especially in mechanics. His earliest attempt to explain this undeniable
fact, given in his inaugural lecture at the University of Königsberg in 1832 [27;
trans., 31, 111–114], is basically Platonistic. The mathematization of nature demands,
as a necessary prerequisite, that ‘‘the concepts of our spirit be expressed in nature.
If mathematics was not created by our spirit’s own accord [and] in accordance with
the laws inculcated in nature, those mathematical ideas implanted in nature could
not have been perceived’’ [31, 112–113]. He charged ‘‘the school of the famous
Count of Laplace’’ with too strong an inclination toward physics, thereby leaving
the ‘‘true and natural way’’ of Euler and Lagrange and ‘‘damaging not only pure
mathematics but also its application even to physical problems’’ [31, 114]. To put
it in terms of a paradox, according to the young Jacobi, applied mathematics at its
best is pure mathematics. The more pure mathematics is developed ‘‘according to
the eternal laws implanted in the human spirit’’ [31, 113], the more ‘‘mathematics
implanted in nature’’ is revealed to the human spirit [31, 113].

In this context, Jacobi’s commitment to Lagrange’s approach [31, 114] is not
astonishing because the Méchanique analitique—one of Jacobi’s favorite textbooks
when he studied mathematics as an autodidact—seemed to be the best realization
of this ideal. Though he does not mention mechanics explicitly, we may assume
that he (also) had this model of mathematical physics in mind when he described
the philosophical significance of applying mathematics: ‘‘The same eternal laws are
valid in our spirit as in nature; this is the prerequisite, without which the world
cannot be understood, without which no knowledge of the things of nature would
be possible. . . . Let us consider nature, as far as it expresses mathematical laws’’
[31, 112]. It is not necessary to elaborate on the point that Euclideanism was no
problem for him at this time but that it was at the core of his philosophy both of
pure mathematics and of mathematical physics.

Jacobi’s mathematical investigations during the first half of his career show a
strong orientation toward his ideal of pure mathematics. Until 1834, he published
no papers worth mentioning on mathematical physics or astronomy [59, XXII].
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Even when he started working on the theory of differential equations of motion
around 1835, stimulated by Sir William Rowan Hamilton, he was not interested in
possible physical or philosophical implications of the Hamilton–Jacobi theory or
of mechanics in general. From his remarks in the Vorlesungen über Dynamik of
1842–1843 in Königsberg, we can conclude that at this time he shared Lagrange’s
rejection of the metaphysical foundations of mechanics and his mathematical instru-
mentalism in general [26, 43–44; 59, XLII–XLIV]. In short, mechanics at its best
was for Jacobi analytical mechanics in the sense of Lagrange, and there is not the
slightest trace of criticism with respect to the aim and structure of the Méchanique
analitique to be found in his papers about mechanics published previously.

This is in striking contrast to the Analytische Mechanik of 1847–1848. Jacobi’s
view of the value and meaning of applied mathematics changed remarkably in the
years before he gave these lectures, as has been shown elsewhere [58, 502–505; 31,
116–120]. In short, this process can be described as the socialization of a pure
mathematician by a broader scientific community, leading to a physicalization and
historization of Jacobi’s interests.

While he adhered to pure mathematics as the standard of rigor and certainty,
he arrived at a clearer distinction of mathematical and empirical knowledge and
developed a more critical attitude toward the problem of why mathematics as a
product of our mind should be applicable to natural reality. He gave up his quite
naive Platonism sketched above and came to a more modern and modest point of
view. His new criticism of Lagrange’s mechanics is the most distinct expression of
this change because it led to a dissolution of traditional mechanical Euclideanism.
Carl Neumann, who studied the manuscript of the Analytische Mechanik in 1869,
described Jacobi’s lecture as ‘‘outstanding on account of its criticism of the founda-
tions of mechanics, which in this keenness was probably never articulated openly
until now.’’6

4. MECHANICAL EUCLIDEANISM AND ITS PROBLEMS: (1)
LAGRANGE’S PRINCIPLE OF VIRTUAL VELOCITIES AND JACOBI’S

CRITICISM OF HIS FIRST DEMONSTRATION FOR STATICS

Lagrange’s ‘‘general principle of virtual velocities,’’ as it is presented in the second
part of the Méchanique analitique (1788), goes back to his prize-winning paper,
Recherches sur la libration de la Lune (1764) [15, 219–232]. It joins together ‘‘the
principle that M. d’Alembert has given in his Traité de dynamique’’ and the ‘‘princi-
ple of virtual velocities [that] has led us to a very simple analytical method for solving
all the questions of statics,’’ thus providing ‘‘a similar method for the problems of
dynamics’’ [33, 180–181].

When Jacobi started his Berlin lectures on Analytische Mechanik in 1847, he was

6 The complete original quotation is: ‘‘Während jene Königsberger Vorlesung fast ausschliesslich nur
die Darlegung und Vervollkommnung der in der Mechanik anzuwendenen analytischen Methoden zu
ihrem Gegenstand hat, zeichnet sich die genannte Berliner Vorlesung aus durch eine Kritik der Funda-
mente der Mechanik, wie sie in solcher Schärfe wohl bis zum heutigen Tag noch niemals zur öffentlichen
Aussprache gelangt sein dürfte’’ [43, 257; Neumann’s italics].
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quite aware of the fact that the presumed certainty and generality of the whole
system of Lagrange’s Méchanique analitique was based upon the principle of virtual
velocities. The main difference between these lectures and his former ones consists
in the addition of a large introductory part devoted to the laws of rest and motion,
especially to the principle of virtual velocities [58, 505–507]. Jacobi borrowed La-
grange’s general principle from the first volume of the second edition of the Mécha-
nique analitique (1811) [36, 1: 258; 39, 1: 274], interpreting it as a ‘‘symbolic presenta-
tion of the system of differential equations’’ of a free mechanical system [28, 6]. If
each of the n mass-points m underlies a force with Cartesian coordinates Xi, Yi ,
and Zi , it assumes this form [28, 6]:

On
i51
HSXi 2 mi

d 2xi

dt2 D dxi 1 SYi 2 mi
d 2yi

dt2 D dyi 1 SZi 2 mi
d 2zi

dt2 D dziJ5 0. (1)

Jacobi made clear that (1) also applies to a system under constraints, which are
given by m equalities containing the 3n coordinates of the mass points (m , 3n).
In this case, the 3n increments dxi , dyi , dzi are no longer ‘‘completely arbitrary, but
are virtual variations,’’ i.e., variations compatible with these constraints [28, 8].

In the case of equilibrium, the ‘‘total moment of the moving forces’’ vanishes,
and (1) implies that the remaining ‘‘total moment of the solicitating forces’’ Xi , Yi ,
and Zi equals zero [28, 11]:

On
i51

hXi dxi 1 Yi dyi 1 Zi dzij 5 0. (2)

In the case of equilibrium, this sum must be equal to zero, and, vice versa, if this
total moment is equal to zero, there must be equilibrium. Jacobi described this as
the ‘‘fundamental principle of statics’’ or ‘‘the famous expression, which Lagrange
gave for the principle of virtual velocities’’ [28, 11].

Lagrange’s original formulation in the first part of his Méchanique analitique did
not use Jacobi’s Cartesian representation (2), but was based on the undivided forces
P, Q, R, . . . , acting along lines p, q, r, . . . on single mass-points. A small disturbance
of the system causes changes of the position of the mass points which are called
the ‘‘variations’’ or, because they are taken for the ‘‘first moment’’ of movement,
the ‘‘virtual velocities’’ of these points [39, 1:19, 23]. Let their projections on the
lines p, q, r, . . . be dp, dq, dr, . . . , where opposite directions of P and dp are
indicated by a minus sign. Then the total moment of forces or, in modern terms,
the ‘‘virtual work’’ of the system is Pdp 1 Qdq 1 Rdr 1 ? ? ? , and (2) assumes
the Lagrangian form [39, 1: 25]

Pdp 1 Qdq 1 Rdr 1 ? ? ? 5 0, (3)

which Jacobi, of course, interpreted also as a reformulation of (1) for the case of
equilibrium. He acknowledged the ‘‘immense importance of this symbolic form’’ (1)
and held the view that ‘‘the discovery of this importance belongs to the greatest inven-
tions of the last century’’ [28, 6]. He accepted the great value of Lagrange’s principle
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for a deductive organization of mechanics, but he also wanted to make clear beyond
any doubt that it has to be established as a principle in the literal sense: a beginning
or ‘‘a proposition without demonstration’’ [28, 9]. No complete proof is possible [28,
9], and all attempts in this direction must be understood merely as a ‘‘reduction to
simpler considerations, which are in the end curae posteriores’’ [28, 10]. He obviously
wanted to spell out that ‘‘something conventional’’ [28, 10] had to be introduced into
analytical mechanics at its very beginnings. (Jacobi’s motivation is analyzed in more
detail in Section 6.) The most rewarding way to achieve this end was to elaborate on
the attempts of Lagrange—the outstanding representative of analytical mechanics
and the author of its most ‘‘important and authoritative’’ textbook [28, 29]—to make
the principle of virtual velocities evident. Jacobi’s criticism applied to both of La-
grange’s demonstrations of (3), but only in the context of the second one did he discuss
the implications of their shortcomings for the transition from statics to dynamics, i.e.,
for a derivation of the dynamic form (1) from the static form (3).

4.1. Lagrange’s First Proof

Lagrange’s first attempt was based on the so-called ‘‘principle of the pulleys.’’
He introduced, as a mere thought-instrument, a set of massless and frictionless
pulleys, an inextensible cord, and a mass with a unit-weight. His leading idea was
to represent forces P, Q, . . . , acting on different points of the mechanical system
by pairs of these pulleys and suitable winding numbers m, n, . . . for the cord,
provided that the tension of the cord is equal at all points.7 (See Fig. 1.)

Lagrange had to assume at this point that the proportions P, Q, . . . are rational, so
that it is always possible to find such integers m, n, . . . , if these integers are chosen

FIG. 1. Lagrange’s first proof.

7 See [35] for Lagrange’s original discussion or Part I, Sect. 18 of the new edition of the Méchanique
analitique [39, 1: 23–25]. The following illustration, as well as the one given in the next section, is taken
from Jacobi’s Analytische Mechanik [28, 26, 90]. Both were added by the editor and cannot be found
in Jacobi’s original lectures (nor, of course, in Lagrange’s mechanics). The notations are adapted to
those used in the text.
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sufficiently large. For the sake of simplicity, we can then identify the measures of forces
P, Q, . . . and the numbers of windings m, n, . . . . Taking this for granted, the expression
for the total virtual moment can be expressed quite easily in geometrical terms:

Pdp 1 Qdq 1 ? ? ? 5 mdp 1 ndq 1 ? ? ? . (4)

If the system is subjected to a small displacement, mdp is the change of length of
the cord for the first pair of pulleys, ndq for the second, . . . , and the sum on the
right is the total change of length of the cord. If this sum is zero, (4) will supply
the wanted ‘‘analytical expression of the principle of virtual velocities’’ [39, 1: 25].

Lagrange also took into account that the case of Pdp 1 Qdq 1 ? ? ? being negative
might describe equilibrium ‘‘because it is impossible that the weight moves upward
by itself ’’ [39, 1: 25]. In this case, however, the displacements dp, dq, . . . can always
be replaced by 2dp, 2dq, . . . , and (4) will be positive, demonstrating that ‘‘the
opposite displacement, which is equally possible, will cause the weight to descend
and destroy the equilibrium’’ [39, 1: 24].

But when can the total length of the cord mdp 1 ndq 1 ? ? ? be assumed to be
zero? Lagrange held it to be ‘‘evident that in order to maintain the system . . . in
equilibrium, it is necessary that the weight cannot descend as a result of any arbi-
trarily infinitesimal displacement of the system’s points; as weight always has the
tendency to descend it will—if there is a displacement of the system inducing it to
descend—necessarily do so and produce this displacement of the system’’ [39, 1: 24].

Jacobi, reading this remark of Lagrange to his students, could not keep calm
when he came to the word ‘‘evident [offenbar]’’: ‘‘This is certainly a bad word,
wherever you find it, you can be sure, that there are serious difficulties; [using] it
is an evil habit of mathematicians . . .’’ [28, 29]. In other words, where Lagrange
asserted evidence and mathematical exactitude, Jacobi ascertained darkness and
logical incorrectness.

Two conclusions on which Lagrange’s reflections are based have to be distin-
guished in order to understand the structure of Jacobi’s argument clearly. Let
arbitrary infinitesimal movements be applied to the mechanical system. Then these
two cases are possible:

(L1a) If no movement causes the weight to descend, the system is in a state
of equilibrium. In this case, (4) equals zero.

(L1b) If there is (at least) one movement that lets the weight descend, the
system is not in equilibrium. The weight will necessarily sink down ‘‘by itself’’ and
will produce a displacement of the system. In this case, (4) does not equal zero.

4.2. Jacobi’s First Refutation

According to Jacobi, both (L1a) and (L1b) are problematic from a logical and
mathematical point of view. For the sake of brevity, I sum up his detailed discussion
in four points [28, 29–39]:

(J1a) Conclusion (L1a) is probably right, if it is restricted to the case of stable
equilibrium. (This restriction, however, is not admissible, as he argues in (J1d))
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But even in this case, (L1a) cannot claim certainty because it is based on nothing
but empirical evidence, especially because it implicitly follows the superficial obser-
vation that a weight can only move downward unless it is in a state of equilibrium.8

Already the simple pendulum shows, however, that the direction of a moving force
is not necessarily the same as that of the movement itself. Jacobi concluded: ‘‘. . .
you have to realize that these probable considerations are not more than probable,
and must not be taken as a [mathematical] demonstration’’ [28, 32–33].

(J1b) Conclusion (L1b) is definitely wrong because it disregards unstable and
median equilibrium. Again, it is sufficient to examine a simple pendulum, where
the weight is placed perpendicularly above the point of suspension. This shows that
a state of equilibrium is possible which is destroyed by all infinitesimal displacements
not inserted in the direction of the connecting rod.9 Lagrange therefore was by no
means entitled to claim that the weight will necessarily sink down because (L1b) is
nothing but a sufficient condition for stable equilibrium. ‘‘It is very suspicious,’’ Jacobi
said, ‘‘that Lagrange could use this form of deduction in spite of all the clear and well-
known cases, where obviously the contrary proves to be true’’ [28, 31]—the more, I
would add, as Lagrange clearly distinguished stable and unstable equilibrium in a
later passage of his Méchanique analitique [39, 1: 70–76]. Jacobi pointed out, however,
that the failure of (L1b) ‘‘destroys the whole character of a demonstration’’ [28, 30].

(J1c) Even if one shares the opinion of Jacobi’s Königsberg colleague and
friend, Wilhelm Bessel, that unstable and median equilibria are irrelevant in physics
because they are always and immediately destroyed by ‘‘forces whirring around’’
[28, 32], it would not be admissible to restrict a demonstration of the principle of
virtual velocities to stable equilibrium: ‘‘. . . in the transition from statics to dynamics
and in many other considerations it is not at all assumed that the equilibrium is
stable, and if the propositions shall not be unnaturally restricted and lose their
value, desisting from instantaneous equilibrium is not allowed’’ [28, 32]. (This point
will be extensively discussed in the next part.)

(J1d) Jacobi finally stated that there is a ‘‘very important case, where La-
grange’s consideration is not at all applicable, namely, if the conditions of the system
are not represented by equalities, but by inequalities’’ [28, 35]. This point refers
both to Lagrange’s formulation and, of course, to his demonstration of the principle
of virtual velocities. A more general formulation of this principle in the form

Pdp 1 Qdq 1 Rdr 1 ? ? ? # 0 (5)

8 René Dugas made the same point more than a century later in his work, A History of Mechanics:
‘‘We remark here, with Jouguet, that Lagrange’s demonstration is based on physical facts—on certain
principles of pulleys and strings’’ [12, 336]. The reference is to the second volume, L’Organisation
de la mécanique (1909), of Émile Jouguet’s Lectures de mécanique [29, 2: 179]. Jouguet had been
Dugas’s teacher.

9 Joseph Bertrand referred to this mistake some years later in an annotation to the third edition of
the Méchanique analitique (1853): ‘‘On a objecté, avec raison, à cette assertion de Lagrange l’exemple
d’un point pesant en équilibre au sommet le plus élevé d’une courbe . . .’’ [39, 1: 24]. Here, he probably
had Dirichlet’s paper ‘‘On the Stability of Equilibrium’’ [11] in mind which he mentioned later [39, 1:
71] and which he added to Lagrange’s textbook [39, 1: 457–459]. It will be briefly discussed at the end
of this section.
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permits constraints expressed by inequalities (i.e., the case of a mass-point outside
a sphere). A demonstration of (5) would have to abandon Lagrange’s exclusion of
negative total momentum described earlier because his argument that dp, dq, . . .
could always be replaced by their opposites is no longer valid if constraints given
by inequalities are taken into account. Fourier first extended Lagrange’s axiom (3)
to the more general form (5) and tried to base it upon the principles of the lever
and the composition of forces.10 As Jacobi in this point explicitly followed Fourier’s
‘‘Mémoire sur la statique’’ and subsequent papers by Gauss and Ostrogradsky [28,
38–39], there is no need to pursue his argument here. It is not important for a
discussion of his original criticism.

Both (J1c) and (J1d) object to the lack of generality of Lagrange’s axiom: (J1c)
refers to the transition from (2) or (3) to the dynamic form (1), and (J1d) to the
transition from (2) or (3) to the more general static form (5). But Jacobi’s principal
concern at this stage is intension rather than extension, as is revealed by (J1a) and
(J1b). These objections aim at the vague meaning of equilibrium in Lagrange’s first
attempt. Missing here is not only a proper distinction between stable equilibrium and
other forms of equilibrium but also a distinct conception of equilibrium altogether.
According to Jacobi, equilibrium can only be assumed as a ‘‘mathematical fiction,’’
as something that cannot be found in nature itself [28, 56, 58, 51]. Mixing up sense
experience with mathematical reasoning in order to gain a proper understanding
of this notion, as Lagrange did (J1a), is therefore not allowed. As a mathematical
notion, it needs a proper mathematical definition. In Jacobi’s words:

If we do not enter into all these probable considerations about ascent and descent because
these are [only] appearances, we will say that equilibrium takes place if, for infinitesimally small
displacements of the system of mass-points, the displacement of the weight is an infinitesimal
magnitude of the 2nd order, so that the infinitesimal part of the 1st order vanishes. Whether
this infinitesimal magnitude of the 2nd order is positive or negative is all the same, it can be
positive for all displacements as well as negative, or rather positive for some and negative for
some other [displacements], and equilibrium always takes place . . . . [28, 35]

Jacobi did not reveal what inspired this weak definition of equilibrium. There
can be little doubt, however, that it had its origin in a talk ‘‘On the Stability of
Equilibrium’’ [11] given by his Berlin colleague and close friend, Johann Peter
Gustav Lejeune Dirichlet, before the Prussian Academy of Science in January 1846.
The lecture was published the same year, i.e., about one year before Jacobi’s lectures

10 See his ‘‘Mémoire sur la statique’’ [14] from 1798. Fourier defines moments with the plus and minus
signs reversed, and therefore presents (5) with $ instead of #. Though Jacobi was interested in Fourier’s
extension (5) of Lagrange’s principle, he did not analyze Fourier’s elaborate attempts with sufficient
‘‘carefulness to present a clear demonstration of a principle, which serves as the foundation of mechanics’’
[14, 36]. The reason for this omission might well be that the core of Jacobi’s criticism of Lagrange,
namely, his inadequate notion of equilibrium (see below), is not called into question by Fourier’s paper.
Quite the opposite: Discussing the stability of equilibrium, Fourier refers to the ‘‘very elegant analysis
of the famous author of the Mécanique analytique’’ [14, 47; cf. 39, 1: 69–76]. For profound discussions
of Fourier’s ‘‘Mémoire,’’ see [2, 47–52; 9; 12, 361–366; 23, 1: 303–308; 41, 166–169].
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on Analytische Mechanik were given. Without going into the details of Dirichlet’s
paper, this hypothesis suggests itself.

Dirichlet demonstrated directly, that the maximum of a function w (in modern
terms, the minimum of the potential energy P, where w 5 22P) characterizes the
stable equilibrium of a mechanical system. Lagrange, on the other hand, gave an
indirect demonstration of the same result based on a development of P in a power
series. He assumed that one was allowed to break off this development after terms
of the second order, and that these terms could be presented as a sum of negative
squares in case of a minimum of P. Then he could show in the third section of his
Méchanique analitique that a minimum of P yields a stable equilibrium and a
maximum an unstable equilibrium of the system [39, 1: 72–74].

Dirichlet criticized Lagrange’s assumption as groundless for obvious reasons [11,
6], and Jacobi shared this criticism. In this context, it is important to note that
Lagrange described his characterization of stable and unstable equilibrium as ‘‘a
direct consequence of the demonstration of the principle of virtual velocities which
we have given at the end of the first section’’ [39, 1: 74]. Jacobi obviously became
suspicious of this consequence as a result of Dirichlet’s talk11 and then turned
his attention to Lagrange’s purported demonstration itself. Jacobi’s definition of
equilibrium, quoted above, takes into account Dirichlet’s criticism and leaves no
room for Lagrange’s attempt at supplying evidence for the principle of virtual
velocities by the principle of pulleys. For Jacobi, it can no longer count as a mathe-
matical demonstration, but merely as an artificial ‘‘construction’’ [28, 24].

If I am right in attributing the roots of Jacobi’s first criticism to Dirichlet, this
manifest shift of mathematical rigor might well illustrate what Jacobi appreciated
most in his friend’s contributions to mathematics, i.e., his high standards of exacti-
tude and accuracy. In a letter to Alexander von Humboldt from December 1846,
Jacobi said of Dirichlet that ‘‘only he, not me, not Cauchy, not Gauss knows, what
a completely rigorous mathematical demonstration is . . . we only know it from him.
When Gauss says, that he demonstrated something, it seems to me very probable,
when Cauchy says it, you can likewise bet on it or against it, when Dirichlet says
it, it is certain [gewiss] . . .’’ [48, 99].

5. PRACTICAL EUCLIDEANISM AND ITS PROBLEMS: (2) THE
TRANSITION FROM STATICS TO DYNAMICS AND JACOBI’S

CRITICISM OF LAGRANGE’S SECOND DEMONSTRATION

5.1. Lagrange’s Second Proof

Some months before he died, Lagrange attempted another demonstration of the
principle of virtual velocities. This last proof of his Euclideanistic spirit can be
found in the second edition of his Théorie des fonctions analytiques from 1813 [37,
350–357; 38, 377–385].

11 And rightly so, as is confirmed anew by Joseph Bertrand’s remark about Lagrange’s argument in
the third edition of the Méchanique analitique (1853). For the case of equilibrium, Lagrange holds it
to be ‘‘evident’’ that the forces P, Q, R can be assumed to be constant. Bertrand correctly criticizes
this step, which ‘‘on the contrary, completely changes the nature of the function’’ P [39, 1: 75].
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Again, Lagrange started with the principle of pulleys, as he called the application
of his thought-instrument. This time, however, he did not use the pulley as a
substitute for forces acting on different masses from outside, but to represent the
inner connections or constraints between the masses. Technically, Lagrange’s second
construction is much more complex than the first, and so is Jacobi’s second destruc-
tion. Now, the transition from statics to dynamics, which had hitherto been periph-
eral, becomes important. In order to point out just the leading ideas, I confine my
analysis at this point to Lagrange’s discussion of a mechanical system with two
masses and one condition of constraint [38, 379–383], though all considerations can
be extended to the general case with m constraints and n masses (m , 3n) [38,
383–385]. Lagrange’s demonstration can be reconstructed in three steps, of which
the second one is of special importance for Jacobi’s discussion:

(L2a) Let there be two masses M and N with coordinates x1, y1, z1 and x2, y2,
z2 at rest. If these masses underlie a time-independent mutual action or constraint,
this constraint can be expressed by a function [38, 382]

u (x1, y1, z1, x2, y2, z2) 5 0. (6)

Taking M or N as fixed, (6) determines a certain two-dimensional surface for the
remaining mass N or M, respectively. Lagrange wanted to show that the force of
constraint can be assumed to be perpendicular to this surface, i.e., that the force
on M and N can be expressed in this way:

Force on M: Sl
u
x1

, l
u
y1

, l
u
z1
D;

(7)

Force on N: Sl
u
x2

, l
u
y2

, l
u
z2
D.

The Lagrange multiplier l is an indeterminate coefficient at the moment.
We will see in (L2c) that Lagrange needed the special mathematical form (7)

for his demonstration. Here, a more general aspect of (7) merits emphasis. Being
able to express the forces of constraint in such a way by the constraint (6) itself,
is of the utmost importance for his approach because there is a gap between his
purely mathematical representation of rigid, geometrically conceived constraints,
on the one hand, and physical actions given by force functions (by the law of gravity,
for example), on the other hand. Equation (7) is meant to bridge this gap, in
the sense that it provides quantitative forces corresponding to certain geometrical
constraints, thus making the forces of constraint comparable with physical forces
from outside. I will come back to this point below.

(L2b) To achieve the representation of the forces of constraints (7), Lagrange
assumed that constraint (6) can be replaced by an ideal pulley, its inextensible cord
being fixed at point M, wound m times around M and a fixed roll A, then going to
another fixed roll B, wound n times around B and the second point N, and then
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FIG. 2. Lagrange’s second proof.

fixed at N. (See Fig. 2.) The inextensibility of the cord can be expressed by the
equation [38, 382]

f 5 m AM 1 n BN 2 d 5 0, (8)

with a certain length-constant d. The function f takes the form

f 5 m Ï(x1 2 a1)2 1 (y1 2 b1)2 1 (z1 2 c1)2

(9)
1 n Ï(x2 2 a2)2 1 (y2 2 b2)2 1 (z2 2 c2)2 2 d

and has all the properties Lagrange needs for his aims. It is easy to see that the
pulley forces can be expressed by the partial derivatives of f, as is assumed for u
in (7). But is it legitimate to replace the constraint function u by the pulley function f ?

The function f contains nine arbitrary constants: the six coordinates of the points
A and B, the length constant d, and the two winding-numbers m and n. Obviously,
the special form of f imposes these two conditions on its derivatives:

S f
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1 S f
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1 S f
z2
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5 n2. (10)

So there are seven constants left. In order to substitute u for f, the corresponding
surfaces must touch each other. This geometrical demand is fulfilled if the first
partial derivatives of f and u are identical:
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These six ‘‘conditions of contact,’’ as Lagrange called them [38, 382], can always
be fulfilled by adapting the seven various constants. It is therefore admissible to
replace u by f. The pulley forces fulfill the orthogonality condition (7) due to the
special form (9) of function f. Condition (7) is consequently valid for arbitrary
functions u, given by (6). The coefficient l in (7) is the remaining one of the nine
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undetermined constants and can be interpreted physically as the tension of the
pulley’s rod.

(L2c) In the case of equilibrium, these forces of constraint are balanced by
free forces from outside for every single mass-point. We can therefore replace each
component of the free forces by the corresponding partial derivative of the function
u according to (7). In order to get the total moment of the mechanical system
needed in our expression of the principle of virtual velocities (2), we have to sum
up the product of these partial derivatives and arbitrary displacements, expressed
by dxi , . . . . The result is

O2
i51

(Xi dxi 1 Yi dyi 1 Zi dzi) 5 O2
i51

l Su
xi

dxi 1
u
yi

dyi 1
u
zi

dziD5 0. (12)

The last equality holds because the displacements xi , . . . have to be compatible
with the constraint (6), implying that the total differential of u must be zero
(du 5 0).

Equation (12) supplies the analytical expression of the principle of virtual veloci-
ties (2) for two masses and one constraint. It also indicates that the argument is
valid for an arbitrary number of mass points n and a number of constraints m
(u1 5 0, . . . , um 5 0) because, in this case, we can repeat the argument with m
pulleys (with du1 5 0, . . . , dum 5 0) and get the same result (2). Lagrange therefore
contentedly closed his second attempt with the remark that ‘‘the principle of virtual
velocities becomes a natural consequence of the formulas which express the forces
by the equations of the conditions [of constraint]’’ [38, 1: 385].

5.2. Jacobi’s Second Refutation

Richard Lindt, in his otherwise excellent historical analysis of the principle of
virtual velocities from 1904, still described Lagrange’s second demonstration as
‘‘exact and general’’ [41, 163]. Jacobi, however, would have rejected both attributes.
His criticism referred mainly to the second step (L2b), that is, to the replacement
of the constraint function u by the pulley function f. In order to show that Lagrange
was wrong, he concentrated on what he regarded as the weakest point in the whole
of Lagrange’s mechanics:

The transition from statics to dynamics generally means a simplification of matters and indeed—
reading the mécanique analytique makes you believe that the equations of motion follow from
those of equilibrium. This, however, is not possible, if the laws are known only in respect to
bodies at rest. It is a matter of certain probable principles, leading from the one to the other,
and it is essential to know that these things have not been demonstrated in a mathematical
sense but are merely assumed. [28, 59]

This argument again refers to Lagrange’s claim to have given a mathematical
demonstration of his fundamental principle. Jacobi rejected this claim on mathemati-
cal and metamathematical grounds. Here, I confine myself to his mathematical
discussion, which considered the range of Lagrange’s method of multipliers in the
context of his second demonstration. As shown above (for m 5 1), these multipliers
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are introduced as undetermined coefficients, but they have a special mechanical
meaning. They express the way the constraints affect the system, or, in more physical
terms, they are proportional to the force exerted by a constraint. We can get rid
of a constraint u 5 0 on a mass with coordinates (x, y, z), if we apply a force

S2l
u
x

; 2l
u
y

; 2l
u
zD, (13)

where the minus indicates that this force has the opposite direction to the force of
constraint. In algebraic terms, this simply means that we subtract this force from
both sides of the equation. It is, Jacobi says, the ‘‘essence of [Lagrange’s] analytical
mechanics that simple algebraic operations correspond to mechanical considera-
tions. This substitution of constraints by forces corresponds to bringing terms on
the other side of the equations’’ [28, 54]. To accomplish this substitution, it is
obviously necessary to determine the Lagrange multipliers of the system. Jacobi
was mainly concerned with the problems of how this works if we proceed from
statics to dynamics and if this procedure is compatible with Lagrange’s second
demonstration. Following his extensive algebraic discussion [28, 54–92], I will now
turn to the general case of a system with n points and m constraints (m , 3n) and
first provide some well-known formulas.12

The independent constraints and their first two derivatives with respect to time,
which are needed later, are given by [28, 41, 61, 84–85]

uk 5 0, k 5 1, . . . , m, (14a)

duk

dt
5 O3n

i51

uk

xi

dxi

dt
5 O3n

i51

uk

xi
ẋi , (14b)

d 2uk

dt2 5 O3n

i, j51

2uk

xi xj
ẋiẋj 1 O3n

i51

uk

xi
ẍi . (14c)

According to Lagrange, these constraints can be incorporated into the principle of
virtual velocities (Eqs. (1) and (2)) by restricting the variations dxi , . . . according
to (14a), but also by adding the corresponding variations, multiplied by the Lagrange

12 It is important to note that the letters a, b, c in the following markings of formulas correspond to
Jacobi’s three steps (J2a), (J2b), (J2c) described below. Identical numbers refer to corresponding formulas
in the three different steps (that is why not all numbers appear in all steps). For the sake of brevity, I
will no longer use Lagrange’s and Jacobi’s Cartesian representation, but a canonical form. The coordinates
of the n mass-points are named x1, . . . , x3n, with masses m1, . . . , m3n (where m1 5 m2 5 m3, etc.) and
force components X1, . . . , X3n . The indices i and j always run from 1 to 3n and the indices k and l
always run from 1 to m (m , 3n). In order to make the parallel between statics and dynamics more
transparent, I will continue to use the dynamic principle of virtual velocities in the form (1), though
Lagrange wrote the accelerating force and the external force as a sum [39, 1: 274] and though Jacobi
inverted the order in the differences of (1) [28, 6]. A welcome consequence of my writing is that from
(15a) onward, all terms belonging to the constraints appear on the right side of the equations. This does
not change, of course, any of Jacobi’s arguments.
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multipliers, to the total moment [39, 1: 79]. In the latter case, the static form (2)
of the principle of virtual velocities becomes [28, 50]:

O3n

i51
Xi dxi 5 Om

l51
ll dul . (15a)

In the dynamic case, (1) changes to [28, 43] (for (15b), see below):

O3n

i51
(Xi 2 miẍi) dxi 5 Om

l51
ll dul . (15c)

Again, if equilibrium holds, (15a) supplies these 3n equations of rest [28, 54]:

Xi 5 Om
l51

ll
ul

xi
. (16a)

Mutatis mutandis, (15c) leads to these 3n equations of motion [28, 44] (for (16b),
see below):

Xi 2 miẍi 5 Om
l51

ll
ul

xi
. (16c)

After these preliminaries, we turn to Jacobi’s argument in some detail. As in
Lagrange’s discussion, it is convenient to isolate three steps:

(J2a) The case of equilibrium, i.e., the mechanical system subject to the given
forces Xi from outside and m given constraints (14a), is at rest, and the position of
the n mass-points has to be determined [28, 48]. This poses no problem for La-
grange’s method of multipliers. There are 3n 1 m equations (16a) and (14a) to
determine the m Lagrange multipliers ll and the 3n coordinates of the mass-points.
If these 3n 1 m equations do not contradict each other, the problem is always
solvable. After determining the ll , we can interpret the system as a free one by
adding on both sides of (16a) the negative of the sum of all forces of constraint
[28, 54–56]:

Xi 2 Om
l51

ll
ul

xi
5 0. (17a)

In particular, we find that the direction of the forces of constraint is always deter-
mined by the constraints themselves (i.e., orthogonal to the corresponding surface),
while their intensities (magnitudes of ll) depend on the constraints and the external
forces [28, 56].

How can this simple procedure be transferred to a dynamic system? This question
was at the center of Jacobi’s further discussion [28, 54–92]. Again, the principle of
virtual velocities (15c) supplies 3n equations, but these are now the second-order
differential equations of motion (16c). If we assume that the system (16c) is solvable
and is indeed solved, a difficult problem remains—at least if we take Lagrange’s
basic idea seriously that constraints can always be replaced by suitable forces. We
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have to determine the 6n arbitrary constants belonging to the solution of (16c) in
accordance with the constraints (15). In Jacobi’s words: ‘‘. . . when everything has
been completely integrated, this problem has to be solved only to determine the
constants’’ [28, 60]. In more physical terms, the initial positions and velocities of
the mass-points must be chosen in such a manner that the movement itself conforms
with the constraints for all later times.

(J2b) Jacobi now inserted an intermezzo that can be interpreted as a step to
bridge the gap between (15a) and (15c) and their solutions (16a) and (16c). What
happens if an instantaneous impulse of finite size, incompatible with the constraints,
is exerted on the system at rest? The real movement of the mass-points must,
of course, be modified according to the constraints.13 If ai are these ‘‘material,
mechanically given’’ impulses at t 5 0 and if ẋi are the corresponding velocities
actually adopted by the mass-points of the system, their relation is given (by analogy
to (15c) and (16c)) by the equations [28, 61]

O3n

i51
(Xi 2 miẋi) dxi 5 Om

l51
ll dul , (15b)

ai 2 miẋi 5 Om
l51

ll
ul

xi
. (16b)

Equation (16b) shows that a given impulse ai is divided into the impulse miẋi , which
is actually adopted by the system, and the impulse on the righthand side, which is
taken up by the constraints.

In order to determine the Lagrange multipliers ll and subsequently the real
impulses, one can substitute for the velocities ẋi in (14b) by means of (16b). The
result is [28, 63]
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where

bk :5 O3n

i51
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mi
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xi
, Akl :5 O3n

i51

1
mi

uk

xi

ul

xi
. (18b)

13 Jacobi had already discussed this point in his Dynamik of 1842–1843 but did not use it in his
discussion of Lagrange’s second demonstration. See [26, 54–56].
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Jacobi now showed in a detailed algebraical excursion,14 that the multipliers ll can
always be determined by (17b) if and only if the m constraints are independent
[28, 79]:

det(Akl) ? 0. (19b)

This time, the multipliers ll depend on the constraints due to the first partial
derivatives in (14b) and on the initial impulses ai . When the multipliers are found
from (17b), the impulses belonging to the constraints (righthand side of (16b)) can
be determined, too. By analogy to (17a), the mechanical system can be treated as
a free one on subtracting these components [28, 81]:

ai 2 miẋi 2 Om
l51

ll
ul

xi
5 0. (20b)

Lagrange’s idea of eliminating the constraints of a mechanical system by means of
his method of multipliers thus works for this intermezzo, too [28, 82]. The procedure
described guarantees that the arbitrary constants in the system of differential equa-
tions (15c) can be determined appropriately, and this is a conditio sine qua non for
mastering the dynamic problem itself.

(J2c) In the case of dynamics the mass-points underlie not only constraints
(14a) but also continuously acting forces Xi according to (15c). It is by no means
evident and must therefore be proven ‘‘that the really moving forces [miẍi in (15c)]
do not violate the constraints of the system’’ [28, 83]. The procedure is analogous
to (J2b), with (15b) and (16b) replaced by (15c) and (16c). As the accelerations in
(16c) have to be compatible with the constraints, we can replace the ẍi in (14c) by
means of (16c) and get [28, 85–86]:
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The Akl are still the same as in (18b), but Uk and ck are given by

14 This excursion is of some historical interest, too, as it largely relies on the theory of determinants
from Cramer, Gauss, and Cauchy and, of course, on his own investigations of determinants. For all
details, however, I have to refer to the commentaries on the passage in question (footnotes 97 to 126
in [28, 63–79]). Nevertheless it should be mentioned that Jacobi excused Lagrange’s omission of such
an investigation: ‘‘ . . . there are several such cases in the mécanique analytique which Lagrange could
not solve because of the unsatisfactory state of algebraical knowledge at that time’’ [28, 65].
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Uk :5 O3n
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Equation (17c) provides a system of equations to determine the multipliers ll as
did (17b). Again, their determination is possible if the constraints are independent,
i.e., if (19b) is fulfilled. The new function Uk, however, implies an important differ-
ence between (17b) and (17c) and changes, as Jacobi said, ‘‘the whole character’’
of the problem [28, 84].

Uk is a homogeneous function of second order in the velocities ẋi , and its coeffi-
cients are the second derivatives of the constraint functions (14a). Consequently, the
multipliers ll will depend on these second derivatives and will become homogeneous
functions of the velocities, too. But Lagrange, in his second demonstration of the
principle of virtual velocities, only demanded first-order approximation when he
replaced the constraint functions ui with the pulley functions fi . There were no
conditions whatsoever imposed on their second derivatives:

From this results an objection to the transition from statics to dynamics. The principle of statics
does not deal at all with points in motion and a particular inquiry, a particular principle has
to be assumed, as to how the velocities are constituted and modified . . . . In the equations we
just formed, the second differential equations of the constraints u appear, but in considerations
which aim at a demonstration of these propositions, and of which Lagrange especially made
use in his théorie des fonctions, the given constraints are substituted without further notice by
a different system of constraints, which underlies only the one restriction, that the new con-
straints are identical both in the positions of the material points at a certain time and in the
first differential equations . . . . [28, 86]

It is convenient to distinguish two levels in Jacobi’s analysis: a technical one and
a more fundamental one. At the technical level, he criticized Lagrange’s replacement
of constraint functions with pulley functions as unjustified because the contact
conditions (11) are too weak for this purpose. On the fundamental level, however,
he questioned Lagrange’s very idea that a system under constraints can be treated
as a free one using the method of multipliers. In the dynamic case (J2c), there is
no equivalent to the formulas (17a) or (20b), unless we introduce such a formula
by analogy as a ‘‘new principle’’ [28, 87–88] in the form of (15c), respectively (16c).
The interpretation of these equations with determined multipliers ll makes it clear
why this principle is really new and why ‘‘something conventional’’ [28, 10] has
to be assumed in the transition from statics to dynamics. Equation (16c) means
geometrically that the difference between the external forces Xi and the ‘‘really
moving forces’’ miẍi is orthogonal to the constraints, as the forces Xi were for resting
mass-points in (16a): ‘‘This, however, is a principle, which is out of the question in
statics . . .’’ [28, 87]. As was shown, the ll depend on the velocities of the moving
bodies, and it is by no means evident that we should assume orthogonality for the
dynamic case, too [28, 88].

Jacobi’s criticism corroborates physical intuition. While quasi-geometrical con-
straints can legitimately be used for bodies at rest, which underlie certain forces,
they involve difficulties for bodies in motion and reacting upon their constraints
on account of their movement. Jacobi therefore summed up his criticism with the
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remark that Lagrange, in his treatment of dynamic problems, mixed up two different
kinds of mechanical conditions—physical forces acting from outside and mathemati-
cally given constraints—which are in reality ‘‘quite heterogeneous’’ [28, 87]. He
does not, however, base his whole argument on physical intuition. Apparently, he
wanted to see Lagrange’s conception of analytical mechanics hoist with its own
petard, i.e., with nothing but mathematical reasoning.

6. DISMISSING MECHANICAL EUCLIDEANISM: THE CHANGING
ROLE OF MATHEMATICS

Jacobi’s discussion of the principle of virtual velocities and his analysis of La-
grange’s two demonstrations in the Analytische Mechanik (1847–1848) is the most
significant addition to the Dynamik (1842–1843). But why did he spend about one
quarter of his last lectures on this point? I have discussed the historical background
of his new critical attitude toward the foundations of mechanics in some detail
elsewhere [58, 502–505; 59, XXXIX–XLVIII]. Here, I consider only one aspect of
his development, but—with respect to his criticism of Lagrange—probably the
most important one: his new attitude toward the role of mathematics in mechanics
and physics in general. Both Jacobi’s admiration for and his reservations about the
great project of a purely analytical mechanics are best expressed in these words to
his students:

. . . you see here a purely mathematical operation as a perfect counterimage of things happening
in nature, this is in a way always the task of applied mathematics. . . . Everything is reduced
to mathematical operation . . . . This means the greatest possible simplification which can be
achieved for a problem . . . , and it is, in fact, the most important idea stated in Lagrange’s
analytical mechanics. This perfection, however, has also the disadvantage that you do not study
the effects of forces any longer . . . . Nature is totally ignored and the constitution of bodies
(whether their elements are inflexible, expansible, elastic, etc.) is replaced merely by the defined
equation of constraint. Analytical mechanics here clearly lacks any justification; it even abandons
the idea of justification in order to remain a pure mathematical science. [28, 193–194]

Jacobi’s reproach has two different aspects. First, he rejected Lagrange’s purely
analytical mechanics for its inability to describe the behavior of real physical bodies.
In this respect, he shared the view of those French mathematicians in the tradition
of Laplace who called for a ‘‘mécanique physique’’ instead of a ‘‘mécanique analy-
tique,’’15 though he had criticized exactly this ‘‘school of the famous Earl of Laplace’’
[31, 114] 15 years earlier (recall Section 3). However remarkable this shift is, it
only concerns low-level adaptations of mathematical techniques to certain physical
demands. It does not affect the foundations of mechanics itself.

15 See [53, 361; 13, 37–46], also part 2 (esp. note 5) and part 3 above. Poisson’s distinction of ‘‘mécanique
physique’’ and ‘‘mécanique analytique’’ from 1829 is foreshadowed in Poinsot’s Sur la théorie générale
de l’équilibre from 1806 where he distinguishes ‘‘mécanique rationelle’’ and ‘‘mécanique physique’’ [52,
Appendix, p. 24]. It must be stressed, however, that Poinsot, Poisson, and other representatives of
French mathematical physics at that time continued Lagrange’s mechanical Euclideanism (see Section
2 above). In other words, they differed from Jacobi not in the first, but in the second, and more important,
aspect of his criticism of Lagrange discussed above.
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The second aspect, however, does so because it concerns the status of first princi-
ples of mechanics. For Lagrange, the principle of virtual velocities was vital to an
axiomatic-deductive organization of mechanics, and his two proofs were meant to
save this Euclideanistic ideal. His whole program of reducing mathematics to analy-
sis and analysis to algebra aimed at a secure foundation of mechanics by mathemat-
ics. In so far as this concept ‘‘lacks any justification’’ and ‘‘even abandons the idea
of justification in order to remain a pure mathematical science,’’ as Jacobi said, it
can rightly be described as ‘‘dogmatic’’ [19, 4].

Contrary to Lagrange, Jacobi used mathematics with respect to the foundations
of mechanics not dogmatically but critically. He applied his analytical and algebraical
tools systematically in order to show that mathematical demonstrations of first
principles cannot be achieved. He neither said that all attempts in this direction
are in vain nor found his forerunner’s attempts equally bad. He regarded Lagrange’s
second attempt as more plausible than the first one [28, 92–93], and Poinsot’s
demonstration [49] as better than Lagrange’s second one, since it makes the principle
of virtual velocities ‘‘intuitive [anschaulich]’’ [28, 93–96]. But intuitive knowledge
is not inferential knowledge; it is not based on unquestionable axioms and strict
logical and mathematical deduction. Jacobi, the representative of pure mathematics,
dismissed Euclideanism as an ideal of any science that transcends the limits of pure
mathematics. The formal similarity between the mathematical-deductive system of
analytical mechanics and a system of pure mathematics (such as number theory,
for example) must not lead to the erroneous belief that both theories meet the
same epistemological standards, especially that the first principles of mechanics or
axioms are as certain and evident as the axioms of pure mathematics. For this
reason, Jacobi explicitly warned his students of the traditional view of mechanical
laws at the beginning of his lecture:

From the point of view of pure mathematics, these laws cannot be demonstrated; [they are]
mere conventions, yet they are assumed to correspond to nature . . . . Wherever mathematics
is mixed up with anything, which is outside its field, you will however find attempts to demon-
strate these merely conventional propositions a priori, and it will be your task to find out the
false deduction in each case. . . .
There are, properly speaking, no demonstrations of these propositions, they can only be made
plausible; all existing demonstrations always presume more or less because mathematics cannot
invent [sich aus den Fingern saugen] how the relations of systems of points depend on each
other. [28, 3, 5]

Jacobi’s point of view is that of the pure mathematician, drawing a line between
mathematics itself and ‘‘anything which is outside its field.’’ This marks a striking
contrast to Lagrange’s physico-mathematician’s point of view and to the French
tradition of mathematical physics in general. An adequate understanding of this
difference cannot be reached without analyzing the role of mathematics in the
diverging disciplinary contexts [31].

Jacobi proceeded from Lagrange’s assumption that the conception of a mathemat-
ically and axiomatic-deductively organized mechanics stands and falls with the
certainty of the principle of virtual velocities, and he wanted it to fall. He wanted
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to make it definitely clear that Lagrange’s ‘‘constructions’’ [28, 24, 89] must not be
regarded as mathematical demonstrations and do not establish evidence and cer-
tainty of this principle. Jacobi therefore pointed out its shortcomings in great mathe-
matical detail. To put it in a nutshell, he used mathematics in order to show that
Euclideanism as an ideal of science is unattainable in mathematical physics and
that ‘‘rubber Euclideanism’’ only conceals the basic difference between pure mathe-
matics and the application of mathematics in the empirical sciences.16

Complementary to this negative and, in some respects, destructive discussion of
Lagrange’s mechanical Euclideanism, a positive and constructive view of the role
of mathematics in mechanics can be found in Jacobi’s last lectures. Mathematics
offers a rich supply of possible first principles, and neither empirical evidence nor
mathematical or other reasoning can determine any of them as true. Empirical
confirmation is necessary, but can never provide certainty. First principles of me-
chanics, be they analytical or Newtonian, are not certain, but only probably true
[28, 3, 5, 32, 59]. The certainty of such principles, the essential feature of mechanical
Euclideanism, is replaced by fundamental fallibility. Moreover, the search for proper
mechanical principles always leaves space for a choice. Due to the creative power
of mathematics, there is a supply of possible principles, and a decision according
to considerations of simplicity and plausibility is necessary. Jacobi consequently
called first principles of mechanics ‘‘conventions’’ [28, 3, 5] , exactly 50 years before
Poincaré did. A detailed comparison with Poincaré’s view, which would show both
striking similarities and important differences, is beyond the scope of this paper
[58, 514–515]. At least one central common point should be emphasized. For Poincaré
and Jacobi, first laws of mechanics are not intrinsic laws of nature ‘‘deduced’’ from
phenomena (Newton) nor are they principles imposed by reason (being synthetic a
priori in the sense of Kant). According to Jacobi, however, they are not protected
from empirical anomalies. They are creatures of mathematics, eligible and revisable
according to empirical evidence and convenience. Mathematical instrumentalism, al-
ready practiced by Lagrange and propagated by the later tradition of analytical me-
chanics, inevitably leads to a dismissal of mechanical Euclideanism. Jacobi seems to
be the first representative of analytical mechanics who drew this consequence.

7. CONCLUSION

Jacobi’s Analytische Mechanik marks a turning point but no singularity in the
history of the Principia mathematica philosophiae naturalis during the 19th century,
as it had considerable influence on the scientific community. Bernhard Riemann,

16 As I have termed Lagrange’s approach to mechanics ‘‘rubber Euclideanism’’ and Jacobi’s criticism
a dismissal of this position, it seems appropriate to end this part with Braithwaite, who probably inspired
Lakatos’s notion of Euclideanism [40, 2: 10–11, esp. n. 1]. There can be little doubt that Jacobi would
have agreed with Braithwaite’s remark: ‘‘The enormous influence of Euclid has been so good in inducing
scientists to construct deductive systems as more than to counterbalance his bad influence in causing
them to misunderstand what they were doing in constructing such systems; the good genius of mathematics
and of unself-conscious science, Euclid has been the evil genius of philosophy of science—and indeed
of metaphysics’’ [6, 353].
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for example, attended Jacobi’s lectures and rejected mechanical principles as axioms,
as Jacobi did. Carl Neumann studied the Analytische Mechanik in great detail
and developed mathematical techniques for movements under constraints along
Jacobian lines. More importantly, he shared and articulated Jacobi’s criticism of
mechanical principles in his famous and influential inaugural lecture at Leipzig On
the Principles of the Galilei–Newtonian Theory [44]. There is a line of mechanical
non-Euclideanism starting with Jacobi that later led to serious doubts about the
validity of so-called Newtonian mechanics [56; 59]. A development originating in
analytical mechanics thus became important for classical mechanics in general. This
tradition is quite independent of Ernst Mach’s well-known criticism of absolute
space and the law of inertia and precedes it. It is nevertheless widely neglected in
the history of mathematics and physics. But just as the frequently drawn parallel
between mechanics and geometry should be taken seriously, we should pay attention
not only to the changes in the foundations of geometry but also to those of rational
mechanics. Both areas deserve our attention. Neither is superfluous, if we really want
to understand scientific change so frequently and carelessly called revolutionary.
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et du mouvement des systèmes, ed. Patrice Bailhache, L’Histoire des Sciences: Textes et Études,
Paris: Vrin, 1975, pp. 1–199.

3. Edoardo Benvenuto, An Introduction to the History of Structural Mechanics, 2 vols., Berlin/Heidel-
berg/New York: Springer–Verlag, 1991.

4. Kurt R. Biermann, Die Mathematik und ihre Dozenten an der Berliner Universität, Berlin: Akademie-
Verlag, 1973.
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series 2, Cah. 5 (1798), 115–118, or Oeuvres, ed. Joseph A. Serret and Gaston Darboux, 14 vols.,
Paris: Gauthier–Villars, 1867–1892, 3: 315–321.
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49. Louis Poinsot, Théorie générale de l’équilibre et du mouvement des systèmes, Journal de l’École
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