HELMUT PULTE

ORDER OF NATURE AND ORDERS OF SCIENCE

On the Mathematical Philosophy of Nature and its Changing Concepts of
Science from Newton and Euler to Lagrange and Kant

[.-.] w derive two or three general Principles of Motion from Phaenomena, and
afterwards 1o tell us how the Froperties of all corporeal Things follow from those
manifest Principles. would be a very great step in Philosophy. though the Causes of
those Principles were nol vel discover'd.

{lsanc Mewton, Opricks, Qu 31)

Les principes de la Mécanigue somt déja si solidement établis. qu'on aumit grand
tort. si Fen vouloit encore douter de leur véntd, Quand méme on ne seroit pas en état de
les démontrer par les principes généraux de la Méaphysique. le merveillens accord de
toutes les conclusions gu'on en tire par ke moyven du caloul, avee fous les mouvemens
des corps ...} seroit sufTisant pour mettre leur vérité hors de douse.

{Leonhard Evler, Réféxions sur espore of fe jems, § 1)

Je me suis proposé de réduire fa théone de [Mechanique). & 'art de résoudre les
problémes qui 5’y rapperient, & des formules générales, domt le simple developpement
doinie toiles les dquations necessamres pour la solution de chague probléme.

(Joseph Louis Lagrange. Méchamigne Anglitigue, Avertissement)

So konnten also jene mathematische Physiker metaphysischer Prinzipien gar nichi
entbehren [...]. Dariber aber blof empirische Grundsitze gelten zu lassen. hielten sie
mit Recht der apodiktischen Gewilheit, die sie ihren Naturgeseizen geben wollien, gar
nicht gemif. daher sie solche licher postulierten. ohne nach ibren Quellen a priori zu
forschen,

{Immaonuel Kant, Meiagphyvsische Amfongseriinde der Nafwwvissenschaf. Vorrede)

I. PRELIMINARIES: THREE POINTS OF DEPARTURE AND ONE AIM

The role of mathematics in eighteenth-century science and philosophy of science
can hardly be overestimated, though it was and is frequently misunderstood. From
today's point of view. one might be tempted to say that philosophers and scientists
in the seventeenth and even more in the eighteenth century became aware of the
importance of mathematics as a means of ‘representing” physical phenomena or as
an ‘instrument’ of deductive explanation and prediction. According to this view, the
rise of mathematical physics is a peripheral aspect of the new experimental sciences,
and the mathematical part of physics is a methodologically directed. constructive
enterprise that is somehow ‘parasitical’ with respect to experimental and
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observational data. But such modernising outcomes of logical empiricism are
missing the central point, i.e., the ‘mathematical nature of nature’ according to
mechanical philosophy. 1 will start with some general considerations about
mathematics under the premise of mechanism before coming to the aim of my paper.

1.1, “Semantical ladenness ' of mathematics

On the premise of mechanism, the primary aim of natural philosophy was the
determination of the morion of material particles under different physical conditions
and the science of motion was the *hard core’ of natural philosophy. Motion itself
being regarded as a genuine mathematical concept. natural philosophy had to be not
only an experimental, but also a mathematical science. Taking this idea seriously.
the attribute *mathematical’ should be understood not as *mathematics applied to
science” but rather as “science, having essentially to do with mathematical entities’.

This is the reason why the new science of motion should be called mathematical
philosaphy of nature rather than mechanics. The traditional meaning of mechanics
as an art which is directed againsr the *nature” of bodies obscures the fact that the
‘new” mechanics dealt with narural motions and aimed at the uncovering of their
primary laws. While Newton made this intention quite clear when he chose the title
Philosophiae naturalis principia mathematica for his chief work, it was the name
mechanica rationalis', used by him in the preface in order to underline his
Joundational claims, that became prominent in the eighteenth century — perhaps for
the sake of brevity. and for this reason only | will use it throughout this paper. It is
important to note, however, that in the course of the eighteenth century, rational
mechanics — even in the abstract, ‘analytical’ form that can be found in the works of
Euler. d"Alembert and Lagrange — never became a “purely’ mathematical exercise
without physical meaning: its concepts and primary laws were located in natural
reality, and (therefore) its deductive consequences were expected to be empirically
meaningful. Hence mechanics herween Leibniz. Newtan and Kant should not be
understood as “applied’” mathematics in the modern sense (a syntactic structure to be
filled” with semantic content by empirical data and rules of correspondence), but as
the most important part of mathesis mixta in the traditional sense, i.e. asa part of
mathematics that is eo ipso a part of natural philosophy. because it was the science
of the (mathematical) laws of (natural) motion. Within the frame of rational
mechanics, mathematical symbols and even the most abstract mathematical formulas
are, 50 lo speak, "semantically laden”.

1.2, Evclideanism

A second common feature of mathematical philosophy of nature benween Leibniz,
Newton and Kant is of equal importance with respect to the role of mathematics:
Rational mechanics follows the ideal of Euclidean geometry, or. to be more precise,
its concept of science is best described as ‘Euclideanism’ (in Lakatos® sense). | will
confine myself in this introduction to its most important feature: its first principles
are not only true, but certainly true, i.e., infallible with respect to empirical
‘anomalies’. This means, ‘irst and above all, that rational mechanics should not be
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understood as a hypothetical-deductive, but rather as an axiomatic-deductive
science, In other words: If the hypothetical-deductive method is “at the core of
modern science [neuzeitliche Wissenschaft]” (Bohme. Alternativen der
Wissenschaft. 84), as is sometimes claimed, rational mechanics from Newion 1o
Kant is not modern, and if it is defined as ‘modern’ [neuzeitlich], which is probably
desirable for a science that was widely regarded as a prototype by both scientists and
philosophers of science in the course of the eighteenth and nineteenth centuries, this
characterisation cannot be true. The ‘historical stability’ of classical mechanics from
Newton to Einstein is not only due to its empirical success, but also to its
Euclideanistic leanings, and the decline of ‘mechanical Euclideanism’ was a
necessary historical premise for the replacement of classical mechanics at the
beginning of the twentieth century,

Newton, in his Principia, used a noteworthy phrase which makes these two sides
of mathematics in natural philosophy visible: axiemata sive leges motus. As leges
mofus, his well-known mathematical propositions act as primary laws of nature
which govern the behaviour of (possibly all) material hodies. As aviomata they act
as first principles of the theory of mechanics, they govern the known laws and
examples (especially from Kepler's celestial and Galilei's terrestrial mechanics) in
order 1o gain a deductive organisation of the whole body of mechanical knowledge.

It is, however, by no means evident that primary laws of nature are ‘prime
candidates’ for axioms of a deductively organised theory. nor is it clear whether
such a ‘metatheoretical coincidence' is possible at all: From natural laws the
philosopher-scientist expects truth, empirical generality, explanatory power
{mechanical explanation of possibly all phenomena of nature). a certain plausibility
and intuitiveness with respect to his scientific metaphysics and (perhaps) necessity.
From first principles or ‘axioms' of a theory he expects, above all, truth, deductive
power (entailment of all the other laws of a theory): moreover they are thought to be
neither provable by other propositions nor — due to their evidence — to be in need of
such a proof.

These demands correspond to each other, but they do not coincide. Why should
they be granted by the same principles? Why should the basic laws of nature be
identical with the axioms of a mathematical theory of nature? Kant, in his Critigue
of Judgement and elsewhere, discusses the possibility that this may not be the case:
Though basic laws exist, their deductive power might be insufficient in order to
build up a coherent order of science. Despite universal lawfulness. nature might, so
to speak, refuse logical order. In this case man would come only to an ‘aggregate’ of
regularities, i.e., to a number of diverging empirical laws, but not to order and unity.

This is a central point of my discussion: Laws have to explain nature, axioms
have to organise theories. But a “congruence’ of the order of nature and the orders
of science is increasingly difficult to guarantee when science produces a growing
body of knowledge. Traditional mechanical Euclideanism is at stake here.

1.3. Orders of science

The plural “orders’ refers to a third point which should be mentioned at the outset:
At the beginning of the eighteenth century, there were indeed fundamentally
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different attempts to gain a coherent system of ‘mathematical principles of natural
philosophy™: At the least, Descartes’ ‘geometrical’ mechanics, based on his laws of
impact, Newton’s mechanics of forces, based on his three laws and the law of
gravitation. and Leibniz’ dynamics, based on laws of impact and the conservation of
vis vig, should be sharply separated.

With respect to its empirical bearing Newton's Principia was obviously the most
successful attempt, but it was neither unique in its intention, nor was it faultless or
complete in its execution, nor was it understeod as ‘revolutionary’ by the first
generation of its readers, as far as the principles of mechanics® are concerned. That
Mewton laid down principles which are sufficient to solve all problems of mechanics
is a legend which was invented by so-called “Newtonians’ of the first generation,
spread by Lagrange, Montucla and others until it became a ‘canon law’ of history of
science with Mach’s Mechanics. In recent times, Thomas Kuhn was its most
prominent advocate’, but this did not improve the “law’: it is simply false. It was
mainly Clifford Truesdell's enormous contribution to the history of rational
mechanics which made obvious that it was during the eighteenth century rather than
the seventeenth century that classical mechanics, as it is known today, took shape.
Therefore, *Classical mechanics’ and *Newtonian mechanics’ (understood as
mechanics laid down by Newron) are by no means syvnonymous. As far as the
Sfoundations of rational mechanics are at stake, the great ‘Newtonian revolution® did
not take place.

Today, we see better than some decades ago that rational mechanics in the
eighteenth century emerged from differens sources and grew into a coherent system
not before the end of the eighteenth century, Descartes, Newton, Leibniz, Huygens,
Euler, d"Alembert, Lagrange and others contributed to the conceptual and
mathematical framework that is known today as ‘classical mechanies’: The three
first mentioned tried to establish fundamentally different sciences of mechanics,
driven by differemt systems of ‘scientific metaphysics™ and therefore based on
different basic concepts and different ‘first” laws of motion. | have elsewhere
proposed that the development of rational mechanics in the first half of the
eighteenth century could be essentially interpreted as a competition of these three
great research programs of Descartes, Newton and Leibniz. If there is some truth in
this conjecture — and a detailed analysis of the numerous controversies about the
‘nature’ of space and time. the conservation of vis viva and the concept of
Newtonian force (esp. gravitation) might show that it is — the Mach-Kuhnian picture
of eighteenth century rational mechanics as a ‘normal” and ‘formal’ elaboration of
the Newtonian paradigm cannot be upheld. To put it in the nutshell of Kuhnian
terminology: with regard to the foundations of rational mechanics the eighteenth
century was not ‘normal’, because the seventeenth century was not ‘revolutionary”
(Pulte, Prinzip, esp. 18). At least the first half of the siécle du lumiére is
characterised rather by the competition among fundamentally different endeavours
to clear up the conceptual and formal framework of rational mechanics, and its
outcome is by no means ‘Newtonianism” in its original meaning.

During a period of ‘revolution in permanence’. however, so-called formal’
elements of science gain a peculiar quality: While a ‘conceptual discourse’ across
the boundaries of actual scientific metaphysics was hardly possible and almost futile




ORDER OF NATURE AND ORDERS OF SCIENCE 63

(as is best illustrated by the famous Leibniz-Clarke correspondence), the language of
mathematics became even more important for a small (and in a way isolated)
scientific community that promoted rational mechanics (as is best illustrated by the
continental reception of Newton's Principia). This is not to share the somehow
naive view that mathematics in the age of reason worked as a kind of ‘meta-
language’, capable of solving even philosoplical problems of rational mechanics
and, as it were. ‘replacing’ the Babylonian confusion of the different tongues of
metaphysics — a view obviously shared by Lagrange. It means, however, that
mathematics played a key role in making accessible the results of one research
program of mechanics to the others, that it was indispensable in integrating those
parts which seemed valuable and that it was the only means of formulating “towe-
ring” principles (like those of least action and virtual displacements) from which all
the accepted laws of mechanics, whether or not they emerge from the ‘native’
research program, could be derived.

Scientific metaphysics tends towards a separation, mathematics tends towards an
integration of different programs. At the end of the eighteenth century, we have one
{and ondy one) system which represents alf of the accepied *mathematical principles
of natural philosophy': Lagrange's Méchanigue Analitigue. But how could this
integration happen? And what was its price, i.e.. did it hold what mathematical phi-
losophy of nature, a century earlier, promised? These questions address the central
point of my paper. the change of concepts of science within rational mechanics and
the reasons for this change,

L4, Understanding the Change af Concepis of Science

*Semantical ladenness® and ‘integrative potential’ of mathematics as well as *global’
Euclideanism (i.e., Euclideanism of all programs of rational mechanics) are three
points of departure of my survey. [ts aim is a better understanding of the
metatheoretical change of rational mechanics which took place in the course of the
eighteenth century and is most obvious if we compare Newton's Principia (1687)
and Lagrange's Méchanigue Analitique (1788). Jirgen Mittelstral has described the
difference between both works as a replacement “of a ‘Euclidean’ [synthetical]
construction of physics by an ‘analytical” construction,” and he has criticised this
development as part of a methodological ‘degeneration’ that started with Newton. |
have criticised the shortcomings of this view elsewhere (Pulte, Mathemarische
Naturphilosophie, ch, 111.6). Here, | will try to explain the development from
Newton to Lagrange by showing that both approaches are in the same ‘Euclidean
line’ (though my definition of ‘Euclidean’ is different), the latter fulfilling, however,
a different function: no decline of method, but rather a change of theoretical
demands.

In general, I will argue that there is a growing tension between the order of
nature and the orders of science that led to a dissolution of Euclideanism, beginning
at the end of the eighteenth century and becoming most obvious in a crisis of
meaning of so-called ‘axioms’ or ‘principles’ of mechanics. (This development,
promoted by the rise of analytical mechanics, opened the way for conventionalism
and instrumentalism in mechanics over the course of the following century, starting
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with Jacobi, Riemann and Carl Neumann and continued by Mach, Hertz. Poincaré.
Duhem and others.) As | am aiming at a structural outline of these developments.
examples, hopefully representative and illuminating. are reduced to a minimum,

2. MECHANICAL EUCLIDEANISM: THE CASE OF NEWTON'S PRINCIFPIA

2. 1. Mechanical Euclideanism

Lakatos® metatheoretical concept of ‘Euclideanism” seems 1o me for several reasons
an appropriate label for rational mechanics as pursued by most® of the eighteenth-
and early nineteenth-century mathematicians, physicists, and philosophers: First,
Euclideanism means that the “ideal theory is a deductive system with an indubitable
truth-injection at the top (a finite conjunction of axioms) — so that truth, flowing
down from the top through the safe truth-preserving channels of valid inferences,
inundates the whole system.” And its basic aim “is to search for self-evident axioms
~ Euclidian [sic!] methodology is puritanical, anti-speculative.” (Lakatos,
Philosophical Papers, 11 28 and 29).

Secondly, Lakatos® concept is epistemologically neutral, i.e., Euclideanism
includes both empirical and rationalistic foundations of the science in question.” For
mechanics this means that it includes theories whose first principles are allegedly
revealed by ‘the light of reason’ (Descartes) as well as theories whose first
principles are allegedly ‘deduced from phenomena' (Newton). Both kinds of
Jjustifications can be found in eighteenth-century mechanics, and in many textbooks
they are inseparably interwoven, D'Alembert, Euler and Lagrange could well
illustrate the (more general) thesis that the decisive philosophical feature of rational
mechanics at this time cannot be understood in terms of the traditional dichotomy
‘rationalism / empiricism®. This epistemological pattern is hardly suitable for
grasping the development of mechanics into a highly organised body of knowledge.
Largely independent of epistemological fixations, it is probably the search for
certain, evident and general first principles and for suitable procedures of deductive
inference with the overall aim of arriving at (possibly all) valid *special’ laws, which
characterises mechanics at the time in question: different epistemological
justifications, but equal metatheoretical fixations.

Thirdly, Lakatos' concept, used as a label, makes explicit that Euclidean
geometry served as the model science for mechanics. This does not only mean that
all relevant mechanical knowledge can be brought under an axiomatic-deductive
structure, but also that it possesses the same distinctive characteristic as any other
mathematical knowledge: infallibility.

In applying *Euclideanism’ in Lakatos” sense to rational mechanics from Newton
to Lagrange," | would like to add some metatheoretical features which are not to be
found in Lakatos’ work. but seem to be in line with his understanding of Eucli-
deanism as the dominating *classical’ concept of science: First, | regard it as a
general characteristic of mechanical Euclideanism that its principles are true in
isolation. This does not necessarily mean that they are logically independent from
other principles, but rather expresses the fact that fiolism (in the sense of Duhem and
(Quine) is alien to mechanical Euclideanism: The set of principles at the top is not in-
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terpreted as one logical conjunction, which (as a whole) is true, but as an aggregate
of individual principles which are true and therefore applicable to the same physical
system without ‘interfering’. That is, for example. the reason why two principles
like the law of inertia and the law of gravitation, though they seem to contradict each
other in a certain sense’’, can coexist in Newton’s Principia as axioms,

A second addition refers to the metatheoretical status of each element of a
theory: This status is immutable, ie., it cannot change with the context of
application. The law of inertia, for example, being understood as a synthetic axiom,
cannot ‘degenerate’ into an analytic definition (of being free of external forces).”

Thirdly, the set of principles of mechanics is understood not only as necessary
and sufficient to deduce all accepted special laws (thereby altogether making them
into proper laws) and to explain all phenomena in question. It is also understood as
unigue in the sense that no second, fundamentally different set is possible. The order
of science is a unigue representation of the order of nature. There is one (and only
one) trie mathematical science of nature, and it is defined by their mathematical
principles or axioms.

The fourth and last addition is of limited range in the temporal aspect: | claim
that the earfy programs of classical mathematical philosophy of nature (Descartes’,
Newton’s, Leibniz’ program) have in common that the irreducible, basic concepts of
mechanics, as they appear in its principles, bear ontological burdens, i.e.. to these
concepts is ascribed a fundamentum in re in their actual scientific metaphysics: To
space, time and mass, indispensable for any kind of mechanics, are added the
concept of vis viva in Leibniz’ program, rooted in his ontology of primary and
derivative forces.” and the concept of (external and directive) force in Newton's
program.” As no concept enters the level of mathematical principles which is nof
ontologically relevant in itself or *derived” from ontological principles (Leibniz). we
can characterize the early programs as different types of marhemarical realism” or
{partly) even of mathematical essentialism: Their first principles reflect the causal
relations of nature.

2.2, Axiomaric Structure and Empiristic Methodology

In how far does Newton's program fit to these characteristics? It has often been
stressed that the Principia ‘follows® the standard of Euclid’s Elements: The formal
structure of the Principia, distinguishing definitions, axioms, propositions, corollars
elc., makes this quite clear, It is, of course, easy to see that the definitions and so-
called axiomata sive leges motus do not *contain’ the lower-level propositions of the
deductive structure in the sense of Euclid’s geometry. Newton frequently introduces
hvpothetically” further propositions (for example laws of forces), concrete examples
etc. and than uses the axiomata in order to derive conclusions which are empirically
testable,

But it has to be kept in mind that the empirical verification (or falsification) aims
only at the hypothesis introduced, not at the axiomata. Are they hypothetical in the
broadest (modern) meaning, i.e., propositions not yet acknowledged to be true and
therefore rezarded as revisable in the light of new experience? This is part of the
question of whether Newton's mechanics is Euclideanistic in Lakatos’ sense.
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Euclideanism in Lakatos’ sense obviously means more than a formal analogy to
Euclid’s Efements. It implies, first and above all. truth and infallibility of the first
principles (or axioms) of the science in question. This ascription is perhaps easy 1o
accept in the case of Descartes, but might be somehow provocative in the case of
Newton.” The reason seems obvious: Newton claimed that he *deduced’ all of his
laws. the axioms or laws of motion included. from phenomena. His discussion of the
methad of “analysis and synthesis’ and his methodologically articulated empiricism
in general are most often understood as an implicit rejection of all Euclideanistic
leanings, as they are ('clearly’ and ‘distinctively’) to be found in Descartes’
philosophy of science: a hallmark not of an axiomatic-deductive. but of a
hypothetical-deductive science.

I do not agree with such a view, the outcome of the efforts of logical empiricism
to make Newton its patron saint. Classical empiricism, as represented by Newion,
does nat “automatically’ imply fallibility of laws or even of first principles: Hertz'
famous dictum, “that which is derived from experience can again be annulled by ex-
perience™ (Hertz, Principles, 9) is not a part of this doctrine. Quite on the contrary,
its basic attitude can be described like this: *That which is derived from experience
(by careful, gradual induction) can never be annulled by (further) experience’.
Without going into the details of Newton's allegedly "empirical’ foundation of his
axioms” and without discussing the vast literature on his philosophy of science. |
would like to focus on the status of Newton's so-called *axioms".

Interestingly enough, Newton is pretty cautious with statements about the
‘axiomatic' status of his laws of motion, the difference between axioms and ‘lower
level’-laws, the possibility of excluding all *hypothetical’ elements from Jaw
statements in general, and from the laws of motion in particular. The reason is that
his empiricism yields no epistemological criteria of demarcation between axioms,
laws and hypothesis though he obviously wants to distinguish axioms and *usual®
laws as well as laws and hypothesis. The whole methodology, as it is laid down in
the Regulae philosophandi of the Principia, in the Queries of the Opticks and
elsewhere, contains but one positive instruction of what to do when an inductive
generalisation (“conclusion”) conflicts with experience: “[...] if no Exception occur
from Phaenomena, the Conclusion may be pronounced generally. But if at any time
afterwards any Exception shall occur from Experiments, it may then begin to be
pronounced with such Exceptions as occur.” (Newton, Opticks, 404). Conflicting
observations or experiments cannot falsify general conclusions, but only restrict
their range of application, Falsification is even excluded, because according 1o
Newton’s empiricism both the conflicting phenomenon ("Exception"} and the
inductive conclusion are indisputably frue.

But Newton's solution - restriction of the range of applicability by the
enumeration of ‘exceptions’ — bears a problem in the case of axioms: According to
his empiristic methodology, they can work as axiems for the {one and only) reason
that they are most general, or even of unrestricted generality. On the other hand they
should be open for restriction, if we take his methodology seriously. But what
Newton really does, in contrast to his methodology, is to ‘immunise’ his axioms not
only from falsification, but also from restriction. “As in Geometry [...] so in
experimental Philosophy,” he says, hypotheses and “first Principles or Axioms™
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have to be sharply separated: “These Principles are deduced from Phaenomena &
made general by Induction: wch is the highest evidence that a Proposition can have
in this philosophy [...]"; with respect 1o a possible falsifier (more appropriate:
‘restrictor’) he argues that “there is no such phaenomenon in all nature.™

Newton sometimes parallels his laws of motion with the axioms of geometry in
order to underline the certainty he ascribes to these laws. “Hypothetical philosophy.”
as proposed by “[Des]Cartes. Leibnitz & some others™ is contrasted with his own
“experimental philosophy.” which starts from “the three Laws of motion [which] are
proposed as general Principles of Philosophy tho founded upon Phaenomena by no
better Argument then that of Induction without exception of any one Phaenomenon”
(Newton, Correspondence, V 398f.). He also reveals essentialistic leanings when he
compares the knowledge of these principles with knowledge of the impenetrability
of bodies (ibid. 399) - a property understood as most general and belonging to “the
foundation of all philosophy™ (Newton, Mathematical Principles, 399).

Newton obviously saw that his Euclideanism could not be founded on his
empiristic methodology. though methodology was necessary to ‘disguise’ a certain
essentialism with respect to first laws which cannor be established empirically. He
therefore uses several other arguments in order to underpin the assumed certainty of
principles — for example physico-theological arguments, especially with respect to
his law of gravitation”. Furthermore, the laws of motion and their corollaries are
summed up by the comment “Hactenus principia tradidi a mathematicis recepta &
experientia multiplici confirmata,"” a phrase that might appeal to the koinai ennciai
or communes animi concepiiones at the time of Euclid’'s Elements (Szabo,
Geschichre, 378-389), i.e., to principles which are neither demonstrated nor in need
of demonstration, though accepted as true by all mathematicians, In a different
context, Newton even describes a violation of the first law as an event which would
disturb “the whole frame of nature, & in the general opinion of mankind is as remote
from the nature of matter as [...] [penetrability]” (Newton, Correspandence, ¥ 399).
“The general opinion of mankind': Remember that for Galileo. a generation earlier.
Newton's first law was less than evident — it was unknown to him in the *linear’
form presented by Newton,

2.3, Newton's Euclideanism

These references are meant to throw some light on an antagonism between Newton's
empiristic methodology and his actual attitude towards his aviomata: He claims that
they are most general results of induction, and therefore can be understood as laws
of nature. But he actually introduces a set of ingeniously chosen mathematical
principles which function as axioms of the deductive structure of the Principia:
Truth is *injected’ from the top, and its flow down to the level of phenomena cannot
be turned round by conflicting observations. They work de facto as synthetic
propositions @ priori. Kant's interpretation of the Principia was closer to the
historical truth than later, *modemising” attempts.

The certainty of principles Newton supposed is only included in his methodology
ex negativo, i.e.. only to the extent that notable exceptions from valid inductions are
not counted as falsifiers, but as ‘restrictors’. But axioms are obviously exempted
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from restriction withour methodological justification: greatest generality and
certainty coincide in his philosophy of science. This coincidence is not {and cannot
be) explained by his methodology. but is rather rooted in his ontology: The material
truth of axioms. inundating the whole system of propositions. stems from
mathematics itself. Newton holds the view that geometry is not a science that can be
separated or abstracted from mechanies, but a science which shows how to apply
mechanically constructed entities to physical reality.* This application poses no
problem in itself: As they stem from nature, they are applicable to it. Rectilinearity,
for example, is ‘natural’; Euclidean geometry and simple algebraic relations
(proportionality, for example) are empirically relevant. This may serve as an
illustration of the thesis that mathematics — in Mewton’s case as in classical
mathematical philosophy of nature in general - is *semantically laden’.

Without geing into the details of Newton's philosophy of mathematics, it seems
clear that his mathematical realism™ is at the core of what | described as his
mechanical Euclideanism. This is the reason why the ontology of ‘absolute, true and
mathematical space’ and ‘absolute, true and mathematical time’ is indispensable for
his attempt to found rational mechanics, With respect to these entities, his axioms
function as symrheric principles @ priori, The traditional, rationalistic-minded
Euclideanism demanded metaphysical support for these principles (as causes are
equal fo its effecis). Newton rejects such support, though he cannot renounce
metaphysics in his attempt to provide mechanics a ‘secure’ foundation:
Methodological inductivism is not sufficient to reach this end.

3. MNEWTONIAN AND ANALYTICAL PERSPECTIVES: EULER'S PROGRAM
OF RATIONAL MECHANICS

It was Clifford Truesdell's huge contribution to eighteenth-century rational
mechanics which has shown that Euler is its towering figure. Especially with respect
to the development of its principles, his aeuvre is unique: We owe to him a sound
formulation of the principle of least action (1744), the general formulation of
‘Wewton’s’ second law (1750), the law of conservation of moment of momentum
(1755), the differential equations of an ideal liquid (1755). the general equations for
the rotation of rigid bodies (1760) and numerous other achievements. Truesdell
made Euler's immense work accessible to the history of science, thereby changing
our understanding of its development in the course of the eighteenth century
dramatically.”

Mevertheless, Truesdell's presentation of Euler's rational mechanics is one-sided
and, in a way, misleading: According to him, “the history of rational mechanics is
neither experimental nor philosophical, it is mathematical,” (Truesdell, Prograns,
11) and consequently he presents Euler's contribution by and large as a
mathematical one,

But Euler has more to offer. As Emst Cassirer remarked, he is “the true and
classical witness of the spirit of mathematical philosophy of nature,” and the
philosopher-scientist who “most completely represents the scientific consciousness
in the middle of the eighteenth century.™ While Euler's work by and large can
support Truesdell’s claim that rational mechanics was not experimental, it is by no
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means suitable to show that it was not philosophical. Quite the contrary: Euler’s
rational mechanics is dork mathematical and philosophical in its character, and [
claim that both parts are indispensable in understanding the coherence and
continuity of his program.

The reason, however, why | chose Euler's mechanics as the ‘fulcrum’ between
Newton and Lagrange is not so much its broad scope. nor its mere success in
uncovering mechanical principles. The main reasons are rather that his program can
serve, first, as a prototype of Euclideanism in the middle of the eighteenth century.
Euler frequently states that rational mechanics has to start with a few necessary
principles and that all changes in nature have to be explained by these principles in a
deductive manner. His Euclideanism can be further described as essentialism in
Popper’s sense, because it proceeds from the idea that “all laws of nature can be
deduced necessarily from one analytical principle (the essential definition of *bo-
dy').” (Popper, Logik der Forschung, 385). It was Euler's main concern to base
mathematical mechanics on a theory of matter in which primary forces — regarded as
incompatible with inertia — have no place. As | tried to show earlier, his scientific
metaphysics and his philosophy of science were strongly influenced by Descartes
(Pulte, Prinzip, esp. 110-121). The Cartesian ideal of a rational mechanics on an
equal footing with geometry is always present in Euler’s works, as it is in
4" Alembert's.” Euler's Mechanica (1736), d'Alembert's Traité (1743) and Euler’s
Theoria motus (1765) are the three major textbooks in the second third of the
eighteenth century, and their most important common feature is Euclideanism.

Notwithstanding its Euclideanism, Euler's program is, secondly, successful in
integrating the results of other programs, namely Newton’s and Leibniz’, though
Euler rejects the Newtonian mechanics of forces as well as Leibniz’ dynamics on
philosophical grounds. There is a ‘peaceful coexistence’ of diverging elements of
different programs to be found in his work. In particular, we find both an elaboration
of a *Newtonian’ axiomatisation (a label which will need some qualification) and the
beginnings of an ‘analytical’ axiomatisation of mechanics (principle of least action,
conservation of vis viva) in his work.

I am interested in how this integration worked and to what extent it changed the
character of mechanical Euclideanism in the middle of the eighteenth century. For
the sake of brevity, 1 will concentrate on four points which seem to me illuminating
in these two respects.

3.1. ‘Synthetical’ Beginnings of Analytical Mechanics

Lagrange. in his Méchanigue Analitique, called Euler's Mechanica (1736) the first
book “in which analysis was applied to the science of motion.”™" Euler himself
remarked that predecessors like Hermann and Newton treated mechanics “in the
way the ancients did, by synthetic geometrical demonstrations.” while he preferred
the “smooth and uniform method” of analysis (Euler, Mechanik, 1 3). As far as the
use of higher calculus® is concerned, the Mechanica was indeed the starting point of
*analytical’ mechanics.

But from a metatheoretical point of view, Euler's first mechanics is a traditional,
synthetic one: It begins along ‘Newtonian lines” with a discussion and definition of
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basic concepts like space, place, time, motion, rest, mass (vig inertia) force. and
proceeds with the laws of motion, which are, contrary to Newton, ‘demonstrated’
and therefore “not only true. but necessarily true.”™ Nearly the whole first chapter
(5§ 1-82). parts of the second (§§ 99-117) and smaller parts of the following
chapters are devoted entirely to the conceptual foundations of mechanics and
problems of measurement. The same could be shown for Euler's second major work
on mechanics. his Theoria moitus (1765) and for numerous smaller articles. It has
been asserted that the appearance of analytical mechanics eo ipso marked a
‘methodological turn’ and even a fundamental change in the ‘concept of science’ to
the extent that analytical mechanics disregarded conceptual and methodological
foundations and made experimental data its methodological starting point.” This
thesis. however, does not withstand detailed historical examination.

1.2 ‘Newtonian® Axiomatisation withowt Newtonian Ontology

Aside from all novelties with respect to content, there is also a new metatheoretical
element in Euler’s program, though not the one rejected above. | would like to
illustrate this new element with just one example:

Euler’s axiomatisation of mechanics is, by and large, a Newtonian one. He
accepts Mewton’s first and third laws as starting points of his marhematical theory
and tries to ‘demonstrate’ their  priori status, and he was the first who established
the general form of Newton's second law in his Décowverre d 'un nowveau principe
de mécanigue (1750)." At this time he believed that it would “include all the laws of
mechanics™ and could serve as the “unigue fundament” of the whole of mechanics
(including the movement of continua, percussion and all processes which were pre-
sumed to be based on action at a distance).”

Euler did not, however, accept Mewtonian, ‘directive’ forces as primary
ontological entities, neither in his Mechanica nor later. There is a discrepancy
between his ontology on the one hand and the basic concepts” of his mathematical
theory on the other. This seems to contradict the essentialism | ascribed to him, and
has indeed provoked interpretations of his program as being ‘instrumentalistic’, But
as was shown elsewhere, Euler never accepted this ‘gap’ between the mathematical
part of his mechanics and his scientific metaphysics as final. He always looked for
an explanation of forces by ‘matter and motion’ and found such an explanation in
the impenetrability of matter, determining forces by the principle of least action and
thereby basing his mathematical, *“Newtonian® mechanics on a *quasi-Cartesian’
theory of matter.”

Though Euler’s solution is ‘conservative’, in so far as it sticks to traditional
essentialism, the fact remains that mathematical axiomatisation and entological
foundation differ: Force is a central and irreducible concept of his mathematical
mechanics, but alien to his concept of matter. This marks a difference between
Euler's program and “earlier” programs of mathematical philosophy of nature, as
characterised above,

The case of Euler shows, as other cases (like d'Alembert and Maupertuis, for
example) would show likewise, a growing fension between the mathematical
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treatment of rational mechanics and its foundation in scientific metaphysics. But
what was its root?

3.3. ‘Inflation of Principles " and Metatheoretical “Stiding of the Center of Grevity”

It has often been claimed that Newtonian mechanics made its way on the continent,
despite all philosophical resistance, because it was empirically successful. especially
in celestial mechanics. Applied to Euler, this might serve as a convenient ex-
planation of how he dealt with forces: He was too much of a mathemarician 1o
dispense with the fruitful Newtonian mechanics of forces, and too much of a (Car-
tesian) philosopher to recognise forces as primary entities.

This argument should not be rejected indiscriminately, but it is of limited range
with respect to the foundations of mechanics: First, it presupposes a prevalence of
‘empirical success’ over ‘rational foundation®, which seems problematic for the wor-
king philosopher-scientists in this period, especially for Euler. Secondly, it is
applicable only in favour of the Newtonian program. But how to explain. for
example, that Maupertuis — first an ardent disciple of Newton's philosophy and
opponent of Leibniz and Descartes - rejected Newtonian forces in his later career
and tried 1o replace Newton's laws by his ‘non-causal’ or ‘descriptive’ principle of
least action, thereby making Leibniz" concept of action the primary concept of his
mathematical mechanics? How to explain the general tendency towards general
principles without causal claims { least action, virtual velocities etc.)?

It seems to me that questions like these cannot be answered satisfactorily by
‘empirical success’, nor by a general epistemological switch from ‘rationalism to
empiricism’. We need to consider the practice of mathematical physics {under the
premise of diverging forms of Euclideanism) in order to understand these features.

What characterises rational mechanics above all in the second third of the
eighteenth century is an inflation of principles: Numerous principles of statics which
had to be integrated into a general science of mechanics. the principle of the
conservation of momentum (or impulse, in modern terminology) for impact. the
principle of vis viva conservation for (elastic) impact and central force problems. the
three so-called Newtonian principles, the principle of moment of momentum,
Maupertuis' loi du repos and the general principle of least action, d'Alembert’s
principle and the principle of virtual velocities, d"Arcy’s principle, Koenig's
principle etc. — not to mention the numerous principles of continuum and fuid
mechanics which had to be integrated into the rational mechanics of mass points.

All of these principles grew out of the study of special problems and idealised
physical situations, whose relevance for a mathematical theory of nature was
determined by the current scientific metaphysics. They were confirmed by
applications to different problems, and often gained their status as *principles’ by
this restricted applicability alone. They were not ‘deduced’ from higher principles,
nor “deduced’ from phenomena (in Newton's sense), but revealed their relevance by
their (possibly limited) explanatory power. In a word: Their status as a ‘principle’
was not due to metaphysical or empirical foundation, but to the deductively
proceeding practice of mathematical physics alone.
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But Euclideanism cannot tolerate a plurality of principles, especially when they
grew out of ‘alien’ scientific metaphysics. It strives for a small number of axioms,
from which lower-level principles must be deduced: Plurality of principles is a result
of different scientific metaphysics. unity is the aim of Euclideanism.” So if a
(possibly ‘basic’) principle of one program turns out to be of (probably limited)
deductive power for a different program, it has to be integrated in the deductive
structure of the latter program. thereby *explaining’ its applicability. The *mania of
demonstration” (Mach, Mechanik, 72) and the fact that it was sometimes unclear thar
‘something must be assumed” (Truesdell, Program, 10) illustrate the efforts made in
order to reach systematic order and, at the same time, that the ties to current
scientific metaphysics were loose,

To give a concrete example: Conservation laws have no place in Mewton's
program. They were alien to Euler's scientific metaphysies, too: Euler was
suspicious that vis viva and impulse (to use the modern word), introduced as basic
concepts of mechanics, would mean introducing *indestructable’ entities — essential
forces (or active principles), which are not allowed by his theory of passive matter.
Johann Bernoulli and other *Leibnizians® convinced him, however, that the concept
of vis viva is of considerable interest to understand the different cases of elastic
impact, and it also became important for his own investigation of central force
problems. Euler therefore introduced vis viva as a derived concept, i.e., as the line
integral of (Newtonian) force, and he also introduced impulse as a derived concept,
i.e., as the time integral of (Newtonian) force.” Problems of conservation of vis viva
and impulse were thereby transformed into problems of Newtonian mechanics and,
in a way, to a problem of mathematics: When does an integrable force function
exist? It depends on the answer to this question, in which (special) case the famous
vis viva controversy can be decided in favour of Leibniz or not. The problem of
force conservation, which was at the bottom of one of the most tedious disputes
between the different programs of mechanics in the eighteenth century. thus became,
as Euler said, a mere dispute about words ("logomachie”) (Euler, D¢ la force, 34).
Conservation of vis wiva, an *axiom” of Leibniz’ mechanics. and conservation of
impulse, (in muce) an axiom of Descartes’ mechanics. are no longer axioms or
‘principles’ in Euler's program, but derived laws, which still can be used. however,
in order to explain special physical phenomena.

This example, too, refers to the importance of the *‘Newtonian®' conceprual
framework for Euler's program. But Euler's Newtonian leanings on the level of
mathematical presentation are in this context not the main point of my argument,
and it is neither the immediate empirical success of this framework (i.e., the
deductive explanation of phenomena) nor the idea that certainty and evidence of
basic axioms must be assured by proper ‘demonstrations’. based on scientific
metaphysics.

Here, my main point is rather the deductive organisation of mechanics itself: It is
not sufficient to have ‘*certain and evident” axioms, it must be shown that the whaole
mechanical knowledge accepted as true falls under these axioms. To use Lakatos’
metaphor; It is not sufficient to introduce ‘truth from the top” by indubitable axioms.
it is also essential to be able to lead truth down to the bottom by building “truth-
preserving channels' (Lakatos, Philosophical Papers, 11 28). This is a characteristic
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feature of Euclideanism in a developed (or advanced) stage: it focusses no longer on
how to come to evident and certain axioms, but on the deductive structure of the
growing body of knowledge. Alwin Diemer. who seems to have been the first
German philosopher of science who tried to find eriteria of demarcation between
‘classical’ and ‘modern’ science. used the metaphor of the “decline of the centre of
gravity” to illustrate such a “structural” development within classical science.”

In the course of the eighteenth century, a lot of mathematical and conceptual
work was done in order to build ‘truth-preserving channels’ for the deductive
structure of rational mechanics. Its outcome was, as already becomes visible in
Euler's huge peuvre, a hierarchically organised system, including elements of the
different programs, but scrowned’ by Euler’s wransformation of Newton’s three laws
of motion.

But remember the *decline of the centre of gravity': What counts here is the truth
of the whale body of mechanical knowledge, which is - according to the Euclidean
concept of science - ‘represented’ by iis axioms in a formal way rather than
“condensed’ in these axioms ina material way.

From this shift results a growing independence of mathematical physics from the
philosophical foundations of its principles, be these foundations ‘empirical’ or “ra-
tional': It is the deductive power of principles rather than their empirical contents,
their axiomatic status rather than their status as ‘laws of nature’, their formal truth
rather than their material truth. which become important. To borrow again from
Lakatos' picture: If the deductive channels are filled with truth, and the truth flow
down to the phenomena can be guaranteed, the source of truth becomes less impor-
tant. Euclideanism continues to shape the concept of science, but it becomes a
syntactical rather than a semantical concept of science.

This development of rational mechanics in the course of the eighteenth century is
reflected by two main features: a decline of metaphysical discussions and a rise of
deductive organisation by appropriate mathematical techniques. The great
controversies about the ‘nature’ of space and time, about the status of gravitation,
about the existence of entities which are conserved in all nature, belong to the first
half of the century rather than to the second, while ‘technical’ discussions about the
calculus of variations, potential theory, differential equations and perturbation
theory were prominent in the second half rather than in the first,

Euler himself saw this shift fairly early, and used it as an argument 1o restrict the
impact of traditional metaphysics on science: In his famous Réflexions sur |'espace
et le tems (1748) he explicitly stated that it is mistaken [0 think that mechanics or
matheratical physics in general receive true foundations from metaphysics, but that,
vice versa, metaphysics has 1o model its basic ideas in such a way that its
conclusions agree with the “indisputable” principles of mechanics (Euler.
Réflexions, esp. 376f.; Cassirer. Erkenninisproblem, 475-479). Mathematical physics
does not (and cannot) dispense with philosophical foundations, but it can (and miust)
determine what has to be founded. Mot autonomy of science from philosophy. but a
certain ‘equilibrium’ of science and philosophy is his object — a model which
resembles Hilbert's distinction of mathematics and philosophy of mathematics
l,'m:tmathn:maﬁcs‘].
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3.4. Analytical Principles of Mechanics

The development sketched above is perhaps best illustrated by analytical
mechanics”®. to which Euler contributed substantially. too. The rise of analytical
principles like the principle of least action or the principle of virtual velocities
cannot be understood by the Mach-Kuhnian pattern of rational mechanics as *normal
science’ in the tradition of Newton's Principia (see part 1.3). These principles
originated from concrete problems, and their development was driven, ar first, by
other programs and (partly) by substantial philosophical difficulties of the
Newtonian program — and not by ‘formal’ demands.

The principle of least action, for example. was understood as an alternalive 1o
Newton's foundation of mechanics by Maupertuis as well as Euler. Both underlined
its descriptive and, so to speak. ‘phenomenological” character in contrast to its
explanatory function in terms of a Newtonian mechanics of forces. While the
concepts of causality and force ran into a crisis, it was meant to provide a new
foundation of mechanics, which had nor to make use of these problematic concepts.
Only later, with Lagrange, it became a merely formal alternative to a ‘Mewtonian’
axiomatisation of mechanics,” i.e., a part of ‘normal Newtonian science” in Kuhn's
sense.”

| am mentioning this ‘context of discovery’ because it is part of the development
described above (see part 3.3.) and might best illustrate some of its implications.
Again, 1 will use mainly the principle of least action for illustration.

First, the concept of action used in this principle is no longer a concept which is
determinated as ‘basic’ by actually scientific metaphysics: Maupertuis picked it up
from Leibniz, but it had no genuine meaning in his own mechanics. Being forced 1o
give a ‘higher’ justification of his principle (a demand of traditional mechanical
Euclideanism), action became a measure of ‘divine force’ — a retrogression 1o
occasionalism which was not rooted in Maupertuis’ genuine scientific metaphysics.
Euler, too, was initially worried about the fact that action could not be justified by
clear philosophical arguments. [t made its way into his mechanics not because it was
rooted in his scientific metaphysics, but because it turned out to be useful. It can
generally be said that concepts like action, efforr and potential energy. in the case of
the least action principle (and Maupertuis® [ois du repos). or virtual work (virtual
displacement), in the case of d'Alembert’s principle and the principle of virtual
velocities, do not have the same semantic relevance as the basic concepts in the
earlier programs of mechanical Euclideanism (like force, velocity, vis viva, etc.).
The rise of analytical principles is accompanied by a ‘semantical unloading’ of their
basic mathematical concepts.

This process is, secondly, parallel to the changing role of analytical principles.
They started from special problems, but soon turned out to be applicable to a wide
range of phenomena and even to derive a number of more special laws of motion
and other laws. Maupertuis and Euler” extended the principle of least action to
optics (derivation of the law of reflection and refraction), to the statics of point
masses and continua (derivation of Maupertuis’ fois du repos, the principle of the
lever, special forms of ‘Dirichlet’s principle’). to the mechanics of impact
(conservation of impulse and, in the case of elastic collision, of vis viva) and to
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central force problems (derivation of Kepler's laws and special forms of the
equations of motion). This applicability to a wide range of “heterogeneous’ problems
was unigue in the history of mechanics, and it led Euler and Maupertuis to the view
that the principle of least action can work as an organising principle of the whole of
mechanics, i.e.. a principle from which a great variety of special laws of motion and
rest can be deduced.” While metaphysical discussions were prominent in the early
career of the principle of least action, its later development was determined by the
extension and analysis of its integrative and deductive power.

This seems to me exemplary for analytical mechanics in general: The rise of
analytical mechanics in the second half of the century highlights the striving of
Euclideanism for an axiomatic-deductive organisation of science. But it has to be
noted that in the course of this process an important change takes place in so far as
principles become formal axioms of science rather than laws of nature. Lagrange’s
mechanics is most significant in this respect.

4. THE EDGE OF CERTAINTY: LAGRANGE'S ANALYTICAL MECHANICS

In a way. Lagrange's mechanics completes the development sketched above though,
in a different way. it marks a break with the older tradition, thereby revealing the
basic philosophical problems of mechanical Euclideanism. In short, Lagrange’s
approach can be described as Mewtonian with respect to the philosophy of nature.
leading to an ideal of mechanics which tries to explain all phenomena by central
forces acting between discrete particles. His philosophy of science, however, was
strongly influenced by d'Alembert and Euler. As both his predecessors. he wanted to
base mechanics on certain and evident principles: “Mechanics can be understood as
a geometry with four dimensions. and the analysis of mechanics can be understood
as an extension of geometrical analysis.” (Lagrange. Théorie des fonctions (2nd ed.).
337).

Geometry continues to be the ideal of mechanics, though the shape of
Euclideanism changes considerably. In trying to illusirate this change. 1 will confine
myself to three major points.

4.1.Changing Principles and Concepts

Before | come to what | regard to be the main features of Lagrange's concept of
science. | would like to refer to a remarkable, though widely neglected development
in Lagrange's foundations of mechanics: For reasons 10 be discussed later (see part
42) Lagrange started his mechanics with analytical principles. In his early career,
he had chosen Euler's principle of least action as “the universal key to all problems,
both of statics and dynamics.™ In his first paper on analytical mechanics, he not
only derived from it different *integrals of movement’, but also the ‘Newtonian” (or
rather *Newton-Eulerian’, see part 3.2) differential equations of motion for all
conservative forces (Lagrange, Application, 369). This was a remarkable
achievement within eighteenth-century rational mechanics, because Lagrange’s
paper was the first work “in which an adequate statement of the laws of a Fairly
extensive branch of mechanics was gotten without the use of an a priori concept of
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force” (Truesdell, Program, 33). This could have been the starting point of a new
conceptual foundation of mechanics which actually was not elaborated until the last
decades of the nineteenth century by Helmholtz, Hertz and others. But actually it
was no starting point, because Lagrange did not even take notice of it — at least he
discussed it nowhere. In later papers as well as in his Méchanigue Analitique he
rather replaced the principle of least action with his ‘variational’ form of the
principle of virtual velocities. thereby reintroducing forces as basic concepts of his
mechanics. If the reconstruction given elsewhere (Pulte, Prinzip, 252-258) is right.
this switch was due primarily to the fact that the latter principle turned out 1o be
more useful in deductive respects: ‘Deductivity” wins over conceptual foundation —
or at least makes conceptual foundation a problem which no longer requires
discussion. This is one of the features of Lagrange’s approach to which | will come
MmO,

4.2, No Geometry, no Methodology, no fexplicit) Scientific Metaphysics: The New
Meaning of ‘Analyrical’

From the beginning, Lagrange’s main aim was a coherent deductive system of the
laws of rest and motion. Both the history of mechanics and its dominating concept
of science (i.e., Euclideanism) make this aim plausible: When Lagrange started his
scientific career in the fifties, he was confronted with a totally different state of
mechanics than Euler was twenty years earlier. As already mentioned, the
mechanics existing then presented a great number of generally accepted laws and so-
called principles, including Newton's laws of motion (in Euler's form)
d'Alembert’s principle and the principle of least action. Lagrange's Euclideanism
could {and had to) operate beyond the level of special examples (as Euler’s), but on
the level of more or less general propositions. These propositions were actually
presented in an algebraic or even analytic fashion, in which geometry possibly
served as a means of illustration,” but no longer had important foundational or
inferential tasks. This is the reason why Lagrange focussed on analytical principles
as ‘candidates’ for axioms of his system (see part 4.1) and disregarded synthetical or
geometrical means, That “no figures are to be found in this work,” (Lagrange.
Méchanique Analitigue. vi) as he later proudly remarked. is an outcome of the state
of affairs of the mechanics of his time and of his Euclideanistic striving for a unigue
order of science — and not of personal preference. as was sometimes presumed. Nos
does this mean, in and of itself, a fundamental change in the concept of science. In
modern terms, geometry remained important for Lagrange in the context of
discovery (Grattan-Guinness, Recent Researches, 679), but had to be eliminated
from the context of presentation and justification. No principles other than the
‘analytical' could actually do the job of deductive organisation. So much for
Lagrange’s neglect of geomelry.

More serious with respect to a possible change in the concept of science is the
absence of nearly any kind of methodology or explicit metaphysical foundation of
mechanics (Pulte, Jacebi's Criticism, esp. 158.). Lagrange's Méchanique Analitique
{1788) is the first major textbook in the history of mechanics which | know of which
abandons any kind of explicit philosophical reflection. It says nothing about how
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space, time, mass, force (in Newton's sense) or vis viva (in Leibniz' sense) are to be
established as basic concepts of mechanics, nor about how a deductive mathematical
theory on that basis is possible, Neither are the metaphysical premises of his
mechanics made explicit, nor is there any epistemological justification given for the
presumed infallible character of the basic principles of mechanics. Lagrange's
silence about foundational issues is in striking contrast not only to seventeenth-
sentury programs of mechanics such as those of Descartes, Leibniz and Newton. but
also to the approaches of Lagrange's immediate predecessors in the analvtical
tradition. i.e., Maupertuis, d'Alembert and Euler. In short, a century after Newton's
Principia, Lagrange gives an ‘update’ of the mathematical principles of natural
philosophy, while abandoning traditional subjects of philosophia naturalis. His bold
claim to make mechanics “a new branch™ of analysis (Lagrange, Méchanigue
Analitigue, vi) by ‘reducing’ it to calculus and reducing the calculus to a sound
#lgebraical basis in order to achieve a secure foundation of the whole of mechanics
{Grabiner, The Calcufux as Algebra, 7-10) can and should be understood not only as
4 rejection of geometrical means, but also as a refection of explicit philosophical
Soundations in the broadest sense, This is the most important metatheoretical novelty
of Lagrange's program. Insofar as Lagrange is not interested in the conceptual
foundations of his mechanics, and even changes his basic concept for reasons of
“formal economy’ (see part 4.1), his mechanics can no longer be understood as a
Euclideanistic enterprise (in the ‘traditional’ sense. see part 1.2 and 2.1}, but rather
& an example of mathematical instrumentalism."

Lagrange obviously shares, by and large, the scientific metaphysics underlying
e Newtonian program (Pulte, Prinzip, 230-240). but this fact is not reflected in his
“purely mathematical’ mechanics. Central forces, free mass-points, absolute space,
absolute time and intuitive natural laws on the ane hand, mathematical concepts of
potential and kinetic energy, masses under ideal constraints. a ‘structural’ (with
respect to the invariance properties of variational principles) rather than Euclidean
space, time as a mere ‘“fourth coordinate’ and abstract variational principles on the
other hand: Mathematics serves as a formal frame. but is ‘unloaded’ of meaning,

We saw that in Euler's program, too, basic assumptions about nature and mathe-
matical presentation deviated (no primary ontological forces here, but basic
‘mathematical® forces there, for example). But this deviation could be cleared up by
& reconstruction of his philosophical thinking: it was explainable by his own
scientific metaphysics. In Lagrange’s case, however, we are left with the simple fucr
that “order of nature’ and ‘order of science' differ. An explanation cannot be found
i his scientific metaphysics (because there is no explicit scientific metaphysics to
Be found in his work), but has to be sought in the wider historical context.

It is my thesis that Lagrange’s mechanics is a logical consequence and, at the
same time, a dissolution of Euclideanism in its original meaning: While the “sliding
of the centre of gravity' (in Diemer's sense, see part 3.3) continues, axioms become
formal principles rather than principles with regard to content: the whole system is
Beld together by logical coherence rather than by material truth. This is what
Sappened in eighteenth-century rational mechanics, this is what later happened in

Beometry.
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I claim that this development is, as far as the mathematical sciences are
concerned, somehow inevitable under the conditions of ‘global’ Euclideanism and
successfully competing research programs: Each program tends towards building up
deductive structures (filled with different contents). global Euclideanism tends
towards building up a unique ‘superstructure’ (left with the problem of what its
content is). To put it more precisely: Lagrange was confronted with an abundance of
different laws (Mewton's laws, conservation laws, variational laws etc.) which
emerged from different programs, and he had good reasons to accept them as valid,
because they had turned out to be appropriate to describe (and deductively *explain’)
different classes of mechanical problems. Lagrange’s Euclideanism now operates on
the level of these laws which are already expressed in algebraical or analytical form.
It aims at a hierarchy of laws, starting with most general ones and ending with
special ones and single problems. Higher calculus serves as the uniting element in
the deductive chains. Insofar as order and unity become the main targets and the
calculus the main means, this mechanics is rightly called analyrical.

To sum up: Lagrange’s main concern is a deduciive organisation of the different
laws. not the discovery of new ones.” Along with the aim of ‘reducing’ all
mechanical problems to general equations, this is the main ohject of his program:
“The various principles presently available will be assembled and presented from a
single point of view in order to facilitate the solution of the problems of mechanics.
Moreover. it will also show their interdependence and mutual dependence and will
permit the evaluation of their validity and scope.” (Lagrange, Analytical mechanics,
-

4.3, Loss of Evidence; ‘Rubber Euclideanism’

Regardless of his ‘mathematical instrumentalism” (see part 4.2), Lagrange stuck to
the idea that mechanics can be built up from evident and certain axioms. The
combination of new instrumentalism (with respect to philosophy of nature) and old
Euclideanism (with respect to philosophy of science) seems to me the decisive
characteristic of his mechanics as well as the weakest point of his approach.”

This combination bears a significant tension of which Lagrange himself was
partly aware, and some of his successors in the French tradition of mathematical
physics were even more so: the conjunction of Euclideanism and instrumentalism
suggests that the ‘deductive chain’ can be started by first principles without recourse
to any kind of geometrical and physical intuition or metaphysical arguments. This
leads inevitably to a conflict with the traditional meaning of ‘axiom’ as a self-
evident first proposition which is neither provable nor in need of a proof. Lagrange
wanted to start with one principle, i.e., the principle of virtual velocities. In the first
edition of his Méchanigue analitique, he introduced this “very simple and very
general™ principle in statics as “a kind of axiom™ (Lagrange, Méchanigue Analitique,
12). He appeased his tangible discomfort with the title ‘axiom® by extensive
references to its successful use by great authorities of the past like Galileo and
Descartes.” In the second edition, he stuck to the title *axiom®, but had to admit that
his principle lacks one decisive characteristic of an axiom in the traditional meaning:
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It is “not sufficiently evident to be established as a primordial principle” (Lagrange.
Mécanique Analvtique (2nd ed.), 123 and 27).

Euclideanism demands evidence; instrumentalism tends to dissolve it. This is the
basic dilemma of Lagrange's mechanies.” In two different so-called “demonstra-
tions' he tried to prove his primordial principle by referring to simple mechanical
processes or machines (Lagrange, Sur le principe des vitesses (2nd ed.). 350-357).
thus trving to bring back intuitive truth to his axiom. Lagrange's formulation and/or
demonstration of the principle of virtual velocities posed a challenge for a number of
mathematicians.” There was a “crisis of principles.” (Bailhache, Infroduction et
commeniaire. 2) and it was caused by the Méchanique Analitigue. All attempts 10
solve it. however, aimed at better demonstrations, giving the principle of virtual
velocities a more secure foundation and making it more evident. Like Lagrange,
they applied their refined logical and mathematical methods to mediate evidence to
the principle of virtual velocities. Lakatos, in a different context, aptly described
such a position as “a sort of ‘rubber-Euclideanism'™ because it “stretches the
boundaries of self-evidence.” (Lakatos, Philosophical Papers, 11 fi

This episode can be interpreted as a ‘metatheoretical turning point® with respect
to “practised” mathematical physics: Some decades later, mechanical Euclideanism
became suspicious, a development which opened the way 10 other concepts of scien-
c¢. But this story is certainly *beyond Leibniz, Newton and Kant',”

5. KANT AND EIGHTEENTH-CENTURY RATIONAL MECHANICS: TWO
PROJECTIONS

Notwithstanding the development of *practiced’ Euclideanism as outlined above, the
ideal of a theory of mechanics on equal footing with geometry continued to attract
scientists and philosophers until the twentieth century. As is well known, Kant's
philosophy of science was (and possibly is) the most important bhastion of this ideal:
Though ‘revolutionary’ in iis philosophical approach. it was ‘conservative’ in its
ohjective to found the theory of mechanics upon certain and apodictic principles.
The preface of Kant's Metaphysical Foundations of Natural Science is perhaps the
best articulated representation of a classical concept of science as distinct from a
modern one” to be found in the whole history of philosophy of science. Apodictical
certainty, @ priori principles, systematic order and the necessity of a metaphysics of
pature as well as mathematics in order to establish such a science are the main fea-
wres of this concept. Kant borrowed it from the mathematical physics of his time,
and he aimed at a philosophical foundation which the scientists themselves were
unable to provide.” Newton's mechanics was his main object. but his attempt to gain
2 sufficient foundation also relied on Leibniz. Euler and other philosopher-scientists
of the Age of Enlightenment.

It may appear daring or even misleading to discuss Kant's foundational attempt
in the context of this paper: Kant next to Lagrange? This might be offensive 1o any
philosopher (and perhaps to some mathematicians as well). Though 1 do not share
such ‘isolating’ views, | will not discuss any details of Kant's mathematical philoso-
phy of nature in this article.” | will rather confine myself to some observations on
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how Kant perceived contemporary rational mechanics and tried to save its
Euclideanism by new means.

5.1 The ‘Synthetical’ Projection: Metaphysical Foundations

The Metaphysical Foundations are synthetic in at least three different (though not
independent) senses: in a new or epistemological Kantian sense ("pure” synthesis of
@ priori concepts; 57), in a traditional or methodological, especially Newtonian
sense (‘proved’ explanation of phenomena and special laws by deduction from
principles; $2) and, close to this, in a traditional mathematical sense (relying on
Euclidean geometry; 53). It was the primacy of geomerrical construction (5.3) which
prevented Kant from considering approaches to mechanics which are basically
different from Newton's as possibly relevant for his foundation of natural
philosophy: Though he could have learned from the analytical tradition (see par
4.1) that mechanics was actually established on different conceptual bases (52). and
therefore might have come to the tempting philosophical problem of whether this
can be done, i.e.. whether a metaphysical foundation (57) for such attempts can be
provided, Kant restricted the Metaphysical Foundations, by and large, to a modified
Mewtonian mechanics: (53) obviously was too evident for Kant — or was this
restriction really brought about by (5/), as a ‘true’ Kantian would argue?

Though Kant did not want to pursue empirical science, he wanted to show how
(on the basis of synthetic @ priori principles) an empirically successful and
mathematical science of mechanics is possible and that (as a science) it forms a
system. i.e.. “an interrelation of reason and consequence.” (Kant. Metaphysische
Anfangsgriinde. A V).

The preface of the Meraphysical Foundations is promising, and many
interpreters did not go beyond it. Kant’s accomplishment of his plan in the following
parts (Phororomy, Dvnamics, Mechanics, Phenomenology) is, however, less
encouraging. Where does he ‘demonstrate’, for example. the assumption made in the
addition to the second definition of his Dynamics “that all movement which one
body [eine Materie] can impress to another must be regarded as applied along the
straight line between both points"? (ibid., A 35). Other ‘lacunae’ could easily be
added. The main reason for Kant’s limited success with respect to ‘contents’,
however, is the fact that he nowhere deduces Newton's second law of motion or an
equivalent law of motion, and, it seems to me that from the conceptual frame chosen
in the Metaplvsical Foundations, no successful empirical science can arise without
such a law, Kant, however, does not even mention it in his book.” By and large it
must be said that only the first part (Phoronomy) was sufficiently developed by him.

If we try to sum up the achievements of the Metaphysical Foundations not from
an ‘internal’ point of view,” but placing it in the wider context of contemporary
science and philosophy of science, the result might look like this: They offered syn-
thesis (along 53), they promised empirical relevance (52) on the basis of its synthetic
@ priovi frame (S7) and they gained only beginnings of the systematic order. which
(according to Kant) is characteristic to ‘proper science’ and which, in a formal.
mathematical (though not symthetical, i.¢., geometrical) manner, largely was
achieved by mathematical physics fiseff (see part 4).
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5.2. The ‘Analytical' Projection: Critigue of Judgement

Though analytical mechanics played no rele in Kant's *gritical’ foundations of
natural philosophy, he did not completely ignore it. He paid special attention to
Maupertuis's principle of least action, because it seemed 1o include not only “the
most general laws, by which matter actually acts.” but also a plentitude of special
laws for quite heterogenous areas of phenomena, thereby giving “unity to the
infinite manifold of the universe, and order to blind necessity.” (Kant, Beweisgrund.
A 63). In his pre-critical period he shared Maupertuis’ physico-theological
interpretation of this principle and made it a part of his argument that “a necessary
order of nature derives the harmonious arrangements of matter from the necessary
laws of interaction constituting the very essence of matter itself.” as Michael
Friedman aptly put it {Friedman, Kant. 13). In Lakatos’ above-quoted metaphor:
Using the physico-theological argument, Kant injects truth at the top (principle of
least action) and claims that it can be spread over the whole system of science
{plentitude of special laws of nature) by deductive inference. thus making these
special laws (which start as mere inductive generalisations — ‘empirische Regeln’)
not only true, but mecessarily true, and their connections necessary. too. His ideal of
a systematic order of science, which in a way should be isomorphous to the order of
nature, is thus guaranteed,

This thought evolved into one of the central problems of Kant's philosophy of
science during his ‘critical period’, when the physico-theological argument was no
Jonger acceptable. While the old “solution’ was given up, the problem remained: We
possess, as a matier of fact, a number of special laws ["besondere Gesetze"] -
empirical rules, which are obviously true, but which have not yet been proved to be
necessary. They form a mere “aggregate’ of possible laws, but no system: Mature
reveals regularities, even possible laws, but no order,” it might be structured in a
such way that we are left in a “labyrinth of a manifold of possible [and] special laws
of nature” (Kant, Erste Fassung, 19) forever: No order of nature, no order of
science.

This problem belongs to the Critique of Judgement, because it is reflecting
judgement which has to subsume special laws under (possibly existing) more
general laws or principles. Kant introduced the ‘transcendental principle of
Jjudgement’ in order to save his ideal of order and unity: We must assume that nature
forms a well-conceived system for our mind. In our context, i.e., in the context of
mathematical order of nature, this premise can be labelled Kant's subjective Sformal
selealogy of nature,

This kind of teleology is explicitly introduced by Kant as a regulative, not as a
constitutive principle. He himself. however, ‘transcends’ this distinction when he
wies to show that subjective formal teleology implies the necessity of the special
laws of nature (i.e., their very lawfulness). This attempt has no sound basis in his
“critical’ philosophy of science, and it cannot yield the nec essity of special laws and
thereby the existence of a scientific system Kant was looking for.” It is as a relapse
%o the pre-critical period, an appeal to the both discoursive and intuitive divine
enderstanding which man can never reach. Thus the ideal of mechanical
Euclideanism — an ‘order of science’ in agreement with the *order of nature’ -
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continues to exist in Kant's philosophy of science as a regulative idea of reason, but
cannot constitute a scientific system in an objective sense.

6. CONCLUSION

I tried to describe and explain some developments of eighteenth-century
mathematical philosophy of nature from a unified point of view, regarding
mechanical Enclideanism as its dominant concept of science, Regardless of
epistemological fixations, this concept of science shaped mechanics up to the end of
the century. It strives, above all, for certain (infallible) and evident principles, but
also for unity and completeness: It aims at an aviomatic-deductive structure of the
whole ‘order of science’. From Euclid’s Elements to Newton's Principia two
thousand years passed without overcoming this ideal and its dogmatic implications.
So, if an all-out hypothetical-deductivism is regarded as the essential feature of
muodern science, rational mechanics in the age of reason was not modern. If. on the
other hand. we want to integrate this key discipline into modern science — certainly
desirable according to the common understanding of modernity - we have to look
for reasons for metatheoretical change which ultimately led to a consequent
fallibilism (i.e., a fallibilism with respect to principles) within mechanics,

In this paper, | tried to locate one important reason for this change within
‘mechanical Euclideanism’ itself: in order to save the ideal of order and unity,
rational mechanics in the course of the eighteenth century had to rely increasingly
on abstract mathematical tools and techniques. thereby “unloading’ its axioms of that
meaning and intuition which was initially (relative to the scientific metaphysics in
question) their characteristic. This process ended in Lagrange's mechanics: The
Méchanigue Analitique makes use of *first’ principles only as formal axioms with
great deductive power which can no longer be understood as laws of narure in the
original sense. This is what, in the end, caused a “crisis of principles’ and promoted
phenomenalistic. conventionalistic and instrumentalistic concepts of mechanics in
the course of the nineteenth century.

Kant, on the other hand, tried to “synthesise’ mechanical knowledge in some
principles, which are, under the premises of his system, certain and evident, but he
made by no means clear how the whole body of accepted knowledge could be based
on these principles. In his philosophy of mechanics, the unique “order of science’
remained an ‘projected’ ideal and nothing more.

Though there were more reasons to believe in the ideal of Euclideanism — the
very possibility of certain foundations and an axiomatic-deductive order of science -
in the eighteenth century than today, this metatheoretical concept cannot be “refuted”
— mot. of course, by history, and not by philosophical arguments either.” It must be
kept in mind. however, that it is “the Programme of Trivialization of Knowfedge ™
This holds true for mathematics at the turn towards the last century and shortly
beyond, where all ‘reductions’ to logic failed, this holds even more true for
mathematical physics in the eighteenth century. Nevertheless | regard Euclidianism
as a historiographically useful category, especially with respect to the history of
mathematical physics. Metatheoretical concepts like this are necessary if we want 1o
understand fundamental changes in the sciences and their philosophy. But they have
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10 be supplemented by guiding historical questions and filled with *factual’ history
in order to uncover reasons for historical change: Perhaps no unique hisiory of
reasan will be possible, but there is certainly more reason in history than some of
our ‘posimodern’ contemporaries would imagine.

fnstivae fiir Philosophie, Ruliruniversitdr Bochum, Germany

NOTES

“[...] ruonal mechanics [mectanica ratonalis] will be the science of motions resulting from any
forces whatsoever, and of the forces required 1o produce any motions, accurately proposed and
demonstrated. This pan of mechanics. as far as it extended to the five powers which relate to manual
arts, wis cultivated by the ancients, who considered gravity (it not being o manual poswer) no
otherwise than in moving weights by those powers. But | consider philosophy rather than ans and
write not concerning manwal bul natural powers, and conseder cheefly those things which relate to
gravity. levity. elastic force, the resistance of fluids. and the like forces. whether attractive oF
impulsive: and therefore | offer this work as the mathematical principles of philosaphy, for the whole
burden of philosophy seems to consisi i this=—from the phenomena of mobons 1o mvestigate the
forces of nature. and then from these forces to demonstrate the other phenomena [ |7 (Mewton,
Wathematical Principfes, XVIL-XVILL In one of his early papers on the history of rational
mechanics, Chifford Truesdell asked for any precurser of Newton using the werm “rational
mechanics'. and 1. Bernard Colen Inter put forward the same question. Alan Gabbey has shown that
it was wsed in Goclenius™s Lexicon phifosophicum Groecwm and therefore “was in (probably
common) use during the first decade of the seventeenth century, m the lates1™ {Gabbey. 309, n. 13)
Hrs argument. that Newton's Principia “was and vwas not a treatise on mechanics™ (ibid.. 308) seems
o be in line with my understanding of ‘mathematical philosophy of nature’. see Pulre,
Marhematisehe Naturphilosophie.

Concerning the foundations of mechanics, Newton's pringiples {aviamara sive feges srotus) and s
law of gravitation should be distingeished What was soon understood as “revolutionary” (in the
sense of an obvious and ireversible break with the past) was his celestinl mechanics. 1.¢., the
application af his three laws and the laiw of gravitation to the motion of the moon and the planets. In
thve lnst decades. however, more and more publications have shown that Mewton's three liws of
motion were neither entirely new. nor undersiood as new by his contemporaries and his imiediate
successors: for an overview see Bos. Marhemaics and Roviona! Vechanics

“Die Mewtonschen Prinzipien sind genfigend. um ohne Hinzuzichung cines neven Prinzips jeden
prakiisch vorkommenden mechamischen Fall [...] zu durchschauen, Wenn sich hierbes
Schwierighelien ergeben. so sind dieselben immer nur mathematischer { formeller) und keineswegs
mchr prinzipieller Natur” (Mach, Mechanik, 272). Mechanics after Mewton is characterised by Mach
as a deductive, formal and mathematical development on the basis of his principles (ibid.. 179

“The Principia [...] did not always prove an easy work (o apply. partly because it retained some ﬂi'th_r
clumsiness inevitable in a first venture and partly because so much of iis meaning was only implicit
im i1s applications. For many terrestrial applications, in any case. an apparently unrelated set of
Continental techniques seemed vostly more powerful, Therefore, from Euler and Logrange in the
eighteenth century 1o Hamilion. facobd and Hertz in the nineteenth, many of Europe’s most brilliant
mathematical physicists repeatedly endeavoured to reformulate mechanical theory in an equivalent
bul logically and sesthetically more satisfving form, They wished. that is. to exhibit the explicit and
implicit lessons of the Prineipia and of Continental mechanics in a logically more coherent version.
one that would be at once more uniform and less equivocal in its application to the newly elaborated
problems of mechanics. Similar reformulations of a paradigm have occwrred repeatedly in all of the
sciences, bul most of them have produced more substantial changes in the paradigm than the
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reformulations of the Principia cited above.” (Kuhn, Sirwciere, 333 Kuhn's marginal note {"Frin-
cipha and of Continental mechanics”) reveals the main problem which he failed 10 address beconse of
the “Machian shaping” of his history of mechanics

In this paper, | will use the teem “scientific metaphysics’ for all assumptions which define the “hard
core” of a scientific research program in the sense of Lakatos. They belong to metaphysics. in so far
as they are immune from empirical falsification. and they are scientific. in so far as they determine
the problemis. basic concepts and acceptable explanations of the science in question. Elkana, inspired
by Lakatos. defines scientific metaphysics as “those untestable hypotheses which deal with the
structure of the phivsical world and which direct scientists in their research™ (Elkana, Ewler and Kot
278). The scientific metaphysics of mechanics shapes the understanding of matter and motion, [t has
genuinely 1o do with the concepts of space, time. mass and (eventually) with the concept of force and
{or) energy and their mutual relations.

See Lagrange's letter to d" Alemberi of January 27, 1778 {Lagrange. Cenres. X111 336),

See Minelstrab, Vewsedt, esp. 302, *Euclidean” and *synthetical” are obviously used as synonyms: see
Minelsirall. Maglichkess, 119 and 236 note 19, The case study “analvtical mechanics™ is also picked
up in MittelstraB. Rationale Rekomnstrukticnen

A remarkable, though not very influential exception & Lazare Carnot: see his Principes. A detmbed
analysis of Camot’s work can be found in Gillispee, Lacare Covnod Savani

Lakatos makes clear that the dichotomy “Evelidian / Empiricist” (or later: “Eoclidian / Cuasi=
empirical’) applies for whole theories, while single propositions are traditionally qualified as “@
prtort | g posteriori’ or “analytic / synthetic™: *[..] epistemologists were slow 10 notice the emergence
of highlv organized knowledge. and the decisive role played by the specific patterns ol this
organization” {ibid, &) This holds true especially for mechanics. The traditional empirical /
rationalistic dichotomy conceals the common basis of infallibility and is not very useful
histoniographically (ibid.. T0-103)

In case of Lagrange. the term “Rubber Euclideanism”™ (ibid.. 7. 9) would be maore appropriake; s
part 4.3 of this paper.

For a detailed discussion see Hanson, Newton s First Law.

Ronald M. Giere exemplifies in ch, 3 of his Explaining Science that this classical demand of
‘metntheoretical invariance” is not accepted by modern philosophy of science.

The concept of force in Leibniz’s physics is analysed in some detail by Stammel, Krafrbegrifl

“Force was an entity ontologically exisient in the universe™ | Westfall, Force, 87)

It has 1o be kept in mind that seadfematical realisa in my sense only implies the oniological
relevance of all concepis which are aciually used in mathemotical princeplés. This does ol mean.
however, that all ontologically relevant concepls enter these principles. The concept of
impenetrability, for example. is ontologically relevant for all important programs of the time in
guestion, but does not (and cannot) play a role in its mathematical formulation. because it has no
quantitative meaning, It is a concept which later disappears from the textbooks of mechanics, though
it i a1ill present in some textbooks of general physics in the first decades of the nineteenth century.
This is probably the reason why it was frequently presented as o model of the “hypothetical-
deductive’ concepd of science (see. for example, Blake. fsaoe Newion ).

Therefore, | can and will restrict my attention to Mewton in this context: | take it for granted that
mechanics in the tradition of Cartesian or Leibnizian rationalism s accepted as “Euclideanistic” in the
sense described above

Remember. for example. (he instances given as “empirical’ support of his first law, according 1o
which “every body continues in its state of rest, or of uniform motion in a right line, unless it is
compelled to change that siate by forces impressed upon it”™: We find projectiles. “so as far as they
are not retarded by the resistance of the air,” a rotating top which “does not cease its rotation,” and
“gven the greater bodies of the planets and comets”™ (Newton. Mathematical Principles. 13). There i
obviowsly no ebservarion which shows the uniformity and rectilineanity of “natural” motion.

Mewton to Cotes on March 28, 1713 (Mewion, Correspondence, ¥ 396-397) Newion's statement
was provoked by an example which was used by Cotes in order to explicate his foundations of
mechanics: “[...] “till this Objection be cleared 1 would not underiake to answer any one who should
assert You do Hypothesim fingere [..]" (ibid.. 392). Though Cotes” thought experiment is untenable
{and therefore is not discussed here), it should be noted that Newton's rejection relies on the
undubitable truth and generality of his aviomai.
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See. for example. his famous letter to Bentley of December 10, 1692 (Mewion. Correspoudertce. 111
233) The law of gravitation does not, of course, belong to his axioms in @ strict sense. But its
cerainty is vital for Newton i order to show thal his celestial mechanics (presented in Book 111 of
the Principia) can be based on a set of cenain principles, Le. his three laws of motson and the law of
gravitation,

Mewton, Principla. 64, Wolfer's German translation ("von den Mathematikern angenommei®™,
Newiton. Marhematische Prinzipien der Natirlehre, 39) promotes eonventionalistic’ misinterpreti-
tions, while the brand-new translation by Volkmar Schiiller ("von den Mathematikemn allgemein
anerkamnt. . Newton, Mathematische Prinzipien der Plosik, 400 does Justice 10 the original meaning
=[...] for the description of right lines and circles. upan which geometry is founded. belongs 1o
mechanics. Geometry does ot teach us how 1o draw these lines, baet requires them to be dravwn, for i1
requires that the learner should first be taught fo describe these accurately before he enters upon
geometry, then it shows how by these operations problems may be solved. To describe right lings and
circles are problems, but not geometrical problems. The solution of these problems is required from
mechanics. and by geometry the use of them, when so solved. is shown: and it is the glory of
geometry that from those few principles. brought from without, it is able to produce so many things”
(MNewton, Mathematical Principles, XVITL

A label already applied to him by Jammer. Problent des Rainnes, 110: see Burtt, Metaphesical
Foundations and Strong, Newron s Mathemeatical Way. for similar judgements.

See part 1.3 for the "non-Kuhnian® implications of this change,

Cassirer, Erkennmisproblem, 472, According to Cassirer the second description was given by a
historian of mathematics of his time, but he agrees with this judgement. especinlly “with respect 10
the methodological manner of the interpremation and treatmem” of scientific problems.

See Honking, Jean d " Alembert, for o detailed diseussion of & Alember’s Carntesian leanings

Lagrange. Mécomigue Analviigue {2nd ed.). | 243. This passage is not included in the firsl edition.

To be more precise: the “explicit” use. It is well known that Mewton made use of calculus, but later
seransiated” his resalis in a geometric language in order o facilitate the reception of his Principia.

See Euler. Mechamik, 1 49, 1 cannot discuss his various demonstrations” in this paper.

See Mittelstral, Newzair, esp. 301-302: see endnote 7 above, and Pulrve. Matfemerisele Natipi-
fasophie, ch. 1116,

The relevance of Euler's Décauverre ts underlined by Trucsdell. Progras and Pulte. Prinzip. esp.
135

Euler. Déconverie. B8-89, Later he discovered that the principle of moment of momentum has to be
added as p scparale “axiom’,

“Hasic concepls” in fis context always means “concepts which are used in the actual axiomatisation
of mechanics’

Eor all detnils see Pulte, Prinzip. 150-181. esp. 176,

As ' Alembert put it in the tithe of his greal texthook: “Traité de Dynamigque, dans lequel les loi de
Iequilibre & du Mouvement des Corps sont réduiles au plus petit nombre possible. & demantrees
4 une maniére nouvelle. & ou I'on donne un Principe général pour trouver le Mouvement de plu-
sienrs Corps qui agrssent les uns sur Jes autres, d une maniére guelcongue.”

See. for example, Euler's D f force and his Amheitung,

~Wenn von der geisiigen oder logischen Evidenz als cinem Wissenschafiskriterium [Klassischer
Wissenschaft] gesprochen wird, so soll ein relativ neutraler und umibassender Begriff vervendet
werden, da damit ein Komplex mit vielerlei Nuoticen gemeint ist. Cienau genommen gilt das Won
st fiir die frille Wissenschaft. spiter witt mehr und mehr dic Idee der fogischen Sirukier; schilvellich
der logischen Ordnung als Systen an seine Stelle. Im einzelnen ist dazu folgendes zu sagen; Dab
Wissen im Sinne des spiter so verstandenen wissenschaftlichen Wissens keine unminelbare Evidenz
in sich mrigt. keine unmittelbare Wahrheit in sich birgt. ist eine implizite Vorausscizung der
Theorie—eigentlich bis zur Gegenwart. So stand wic dber der episteme der nous, so dher [der]
ecientia als der ‘mittelbaren” der intellectus biw. die inelligentia als die eigentliche unmiticibare
Einsicht der letzien Wahrheften, der Axiome Durch die Evidenz der Ableitung, der *De-duk-
tion'—{ “Apagoze b—wird dann die Sicherheil und Gewibheit der anderen Sitze garantiert. Che
wissensehafiliche Gewifheit wnd insafern die Wissensehaffichkel fiegs alse nichi so sehr i der
wrsprimglichen Schaw als der gesicherien, d.h. svstremaiischen Ableitnmg, Dies wird runachsl
anmittelbar gesagt und sinngemaB versucht. die entsprechenden Syllogismusstrukiuren als die
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entsprechenden Wege zu entwickeln. In sunchmenden MaBe verlagert sich dann spiiler der
Schwerpunkt: er rutschi gewissermalen “abwants’ [.] 7 ( Diemer, Begrivaung. 30-31)

Mote my general wse of this technical term: Mot all mechanics which uses caleulus 15 called
“analytical” { Euler’s Mechanico, for example. is not “analytical” in this sensel. but only mechanics im
s0 far as it makes use of principles. which are based on analvtical privcyples. ie.. infegral variational
principles (like the principle of least action) or differential variational principles (like the principle of
virieal velocities ).

See Pulte, Provzip, 230=261. for a more detailled discussion of this development

See endnode 4 above: see also part 4 for more details

Here | do not distinguish between Maupenuis® and Euler’s formulations, though they do differ
various details, It s noteworthy thar Evler and Maupenuis always stressed that they discovered and
elaborated the some principle

This emerges even from the titles of some of Maupertuis’ and Euler’s essays on the principle of leass
action, See, for example, Mauperiuis. Accord de difidremes Loix de lo Nature gui avoient jusgu e
par incesngratibles and Les Lots du Mowvement o din Repos dédwires o ‘un Principe Metapfnaigee
and Euler. Harmomie emre fes principes géndrales de repos ef de mowrvemen de M de Meagperints.
Leter to Euler of May 19, 1756 {Lagrange, Qervres, Vol, |4, 39]-392)

Euler. for example. frequently makes use of geometrical figures. even if he deals with “analvtical
mechanics’ (i the narrow sense defined in endnote 38)

In order to avoid misendersiandings, | must emphasise that ‘instrumentalism’ heve refers 1s
philosophy of mature (113 rather than to philosophy of science (121 Lagrange did not base his
mathematical formialation of mechanics on an analvsis of the undamental concepts of philosophy of
nature like matier, force. space and time, as did Descanes. Newion, Leibmiz, dAlembert, or Euler
Instend. he chose the basic concepts and lows of his theary in a mathematically convenieni manner.
This is what | call instrumentalism (110 and which is best illustrated by Lagrange’s switch described
in part 4.1, In contrast, isirumenialism with respect io philosophy of science (12) &s characterised by
the view that the whole theory of mechanics or at least one of its principles is only n tool 10 describe
and predict phenomena without having any real content siself. Lagrange certainly would not have
accepted being called an instrumentalisg in this sccond sense (see part 4.3, but also part 4.1) He
could not. however, have refuted such an ascription: A consistent instrumentalism (11, which is sof
supported by an adeguate theory of representation fevitobiv leads to (123, Therefore the distinction 1
gemerilly unnecessary, but as Logrange’s view is not consistent in this respect, it has 1 be Kept in
mind

That is the muin reason why Lagrange’s mechanics was sterile in some respects: 1t contains no truly
new principles. mor new concepts of mechanies. &5 Truesdell and others have justly remarked,

The Méchanigue Analitigue “réunira & présentera sous un méme point de vee, le différens Principes
trouvds jusgu’iel pour faciliter I solution des guestions de Méchangue, en monirera la liaison £ s
dépendunce mutuelle, & mettra & portée de juger de leur justesse & de leur étendue,” (Lagrange
Mécharrigie Anfitigue. v)

fegardless of its philosophical shorncomings, the Méchamigre Analivgue became for some lime 8
model of how mathematics should be used i physics. |t is fis sdvanced mathematical and anti-mets-
physical style which made his texthook attractive for working mathematicians 1ike Fourser os well gs
fior positivistic philosophers like Comie (see Fraser, Lagrange s Anafviical Mechanics), It was widely
acoepted as the dest reafisanon of o *purcly mathematical” Eoclideanism in physics.

ibid, 8-12. Lagrange uses the history of mechanics partly as a substtute for missmeg philosophical
Justification

It was probably brought o his attention by Fourter's Mémaire from | 798

From Fourier (1798), de Prony (1798), Laplace (17990 L. Carnot { 1803) and Ampére (1806) o
Cournot { 1 829), Gauss ( |829), Poisson (| 833), Osirogradsky (1835, 18380 and Poinsot (1806, 1838
1846). They mimed ot on extension of Lagrange’s principle, taking into account conditions of
constraints given by inequalities (Fourier, Cournot, Gaoss, Ostrogradsky ) and/or at i1s berier

Sourmdt i

Im the passage above | reported apon the imterpretation of Pulie. Jacoli s Crinciser, |58+ 60; see
160-181 for the subsequent development of analytical mechanics. especially with respect o C1G )
Jacohi

See vemer, Begrimding. s well as Diemer and Komg, Wax fsr Wisserschaft?.
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Kant, Metaphysische Anfengsgrinde. A X111 see also the monos of this paper.

See Pulte. Marhematische Naturphilosaphie, Ch, 1117 for Kant's contribution in the confext of the
general decline of “mechanical Euclidianism’

This gap was—curiously enough—ofien ignored (see, for example, Gloy, Die Kantische Theorie.
Schafer, Kants Meiapfsik) or belinled. Eric Waikins shows in his The Laws af Movion in some
detail that Kani's omission was by no means unique in ¢ighteenth-century German atiempts 10 Justify
the Taws of metion. Euler and others, however. tried to give a justification of the second luw. and
kant's strong orientation towards the introductory part of Mewlon's Principda algo urges toward
further explanation. Some notes in his (pus postusiun sugzest that Kant (later) might have regarded
the relation between force and motion as & matter of empicteal investigation. This would mean,
however, 8 serious drawback for his claim fo provide a foundation of mathematical philosaphy of
nature including dynamics. mechanics and phenomenology (in his terns),

See for example Gloy, Die Kantische Theorie. Plaass. Kants Theorie and Schitfer, Kanis Metapinsik,
In & certain sense this was, restricted 1o the area of mechanics, Lagrange’s problem. too: His amempt
w0 organise mechanics by means of analytical principles starts with the fact that there are & number of
sccepted laws, but that no order and wnity con be found among these laws This may serve as a
second reason for calling this projection ‘analytical”

For a criticism of Kant's approach see Pulte, Physikotheologie. esp. 320-327. | have tried to show
that Kant's adherent ). F, Fries gave a more satisfving methodological solution of this problem {ibid.,
327-H1)

4s Lakaos apily states: “An Euclidean never has 1o admit defeat: his programme is imefutable. One
can never refute the pure existential stiterment that there exists @ set of trivial fisst principles from
which all truth Follows, Thus science may be haunted for ever by the Euclidean programme as a
regulative principle. *influential metaphysics™ {Lakatos. Philesophical Papers. 116),

ibid. 5
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