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Zusammenfassung: Rationale Mechanik im 18. Jahrhundert. Zur strukturellen
Entwicklung einer mathematischen Wissenschaft. Die Rolle der Mathematik in
den Wissenschaften sowie in der Wissenschaftsphilosophie des 18. Jahrhunderts
kann kaum hoch genug veranschlagt werden. In neueren wissenschaftsphilosophi-
schen Darstellungen wird diese Rolle jedoch haufig in einer anachronistischen Weise
beschrieben und analysiert, indem jiingere Auffassungen iiber formale Mathematik
einerseits und empirische Wissenschaft andererseits in die Vergangenheit projiziert
werden: Man mag vom heutigen Standpunkt aus tatsichlich versucht sein zu sagen,
dass Philosophen des 17. und vor allem des 18. Jahrhunderts die Bedeutung der
Mathematik fir die ,Reprisentation® physischer Phinomene oder als ,Instrument’
der deduktiven Erklirung und Voraussage erkannten. Solche Modernismen gehen
jedoch am eigentlichen Punkt vorbei, namlich der Tatsache, dass es fiir die mechani-
sche Philosophie per se eine ,mathematische Natur der Natur* gibt. Hinzu kommt,
dass sich das Verstindnis von dieser ,mathematischen Natur im Verlauf des 18. Jahr-
hunderts aus verschiedenen (mathematischen, philosophischen und anderen) Griin-
den dramatisch veranderte. Dieser Sachverhalt wurde in fritheren philosophischen
Analysen der fraglichen Entwicklung kaum wahrgenommen. Heutige Wissen-
schattsphilosophie aber sollte der Wissenschaftsgeschichte eine historisch genauere
Analyse anbieten, ohne dariiber ithren — von Historikern durchaus nicht immer ge-
schitzten — Auftrag aufzugeben, grundlegende Konzepte und Methoden der fragli-
chen Wissenschaft, die fiir ihr Verstindnis von Bedeutung sind, offenzulegen. Der
folgende Beitrag gibt eine ,strukturelle Skizze® tiber die Entwicklung der rationalen
Mechanik von Newton bis Lagrange. Er versucht dabei dem Sachverhalt Rechnung

* This paper is a substantially extended version of my Newton-talk presented at the Vienna Sym-
posium on “Wissenschaftsgeschichte und Wissenschaftsphilosophie” of the Gesellschaft fiir Wis-
senschaftsgeschichte in May 2011. To some extent, later parts of this paper were already present-
ed at the Research Symposium “Unreasonable Effectiveness? Historical Origins and Philosophi-
cal Problems for Applied Mathematics” (All Souls College, Oxford, December 2008) and at the
Workshop “Mathematics in the Physical Sciences, 1650-2000” (Mathematisches Forschungs-
institut Oberwolfach, December 2005). I am grateful to the participants of all three meetings for
constructive and fruitful discussions. Also, I would like to thank two anonymous referees of this
journal for comments on some special aspects of my argument. One of the consequences of the
development discussed in this paper, i.e. the change of the concept of science, is elaborated in
more detail in Helmut Pulte, Order of Nature and Orders of Science. On the Mathematical Phi-
losophy of Nature from Newton and Euler to Lagrange and Kant, in: Wolfgang Lefévre (ed.),
Between Leibniz, Newton, and Kant. Philosophy and Science in the Eighteenth Century, Dord-
recht: Kluwer 2001, p. 61-92. For a broader study of the subject that includes the nineteenth
century, see the same, Axiomatik und Empirie. Eine wissenschaftstheoriegeschichtliche Untersu-
chung zur Mathematischen Naturphilosophie von Newton bis Newmann, Darmstadt: Wissen-
schaftliche Buchgesellschaft 2005.
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zu tragen, dass rationale Mechanik im 18. Jahrhundert primir als eine mathemati-
sche Wissenschaft verstanden wurde. Ausgehend von diesem mathematischen Status
versucht er auch, gute Griinde fir den grundlegenden Wandel ihrer Wissenschafts-
auffassung im fraglichen Zeitraum zu liefern.

Summary: Rational Mechanics in the Eighteenth Century. On Structural
Developments of a Mathematical Science. The role of mathematics in eighteenth-
century science and of eighteenth-century philosophy of science can hardly be over-
estimated. However, philosophy of science frequently described and analysed this
role in an anachronistic manner by projecting modern points of view about (formal)
mathematics and (empirical) science to the past: From today’s point of view one
might be tempted to say that philosophers and scientists in the seventeenth and even
more in the eighteenth century became aware of the importance of mathematics as a
means of ‘representing’ physical phenomena or as an ‘instrument’ of deductive ex-
planation and prediction. But such modernisms are missing the central point, i.e. the
‘mathematical nature of nature’ according to mechanical philosophy. Moreover, the
understanding of this mathematical nature changed dramatically in the course of the
eighteenth century for various (i.e. mathematical, philosophical and other) reasons —
a fact hardly appreciated by former philosophical analysis. Philosophy of science
today should offer a more accurate analysis to history of science without giving up
its task — not always appreciated by historians — to uncover the basic concepts and
methods which seem relevant for the understanding of science in question. This
paper gives a ‘structural account’ on the development of rational mechanics from
Newton to Lagrange that tries to give justice to the fact that rational mechanics in
the eighteenth century was primarily understood as a mathematical science and that
— starting from this understanding — also tries to give good reasons for the funda-
mental change of the concept of science that took place during this period.

Keywords: rational mechanics, mathematical science, eighteenth century, Newton,
Lagrange

Schliisselworter: rationale Mechanik, mathematische Wissenschaft, 18. Jahrhundert,
Newton, Lagrange

1. Introduction

Historians and philosophers of science largely agree about the fundamental impor-
tance of mathematics for the shaping of science in the later seventeenth and in the
eighteenth century. But there is less agreement about the questions what this role ex-
actly was and why it worked as a model of science for philosophers and scientists
both in the tradition of rationalism and empiricism. The modern view tends to stress
mathematics as a ‘tool” of representation of physical phenomena and as a device for
their deductive explanation and (or) prediction from general laws.

According to this picture, the rise of mathematical physics is a kind of ‘epi-phe-
nomenon’ of the rise of the new experimental sciences, and the genuine mathematical
part of physics is understood as a methodologically directed, constructive enterprise
that somehow depends on experimental and observational data. This picture, how-
ever, does not do justice to the essential mathematical character of nature according
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to mechanical philosophy, which forms the basis of all advanced research programs
of rational mechanics in the eighteenth century.

Application of mathematics in mechanical philosophy is a very colourful and het-
erogeneous business, reaching from the quantitative measurement of ‘primary quali-
ties’ to the deductive organisation of whole theories. In the context of mechanical
philosophy even the very idea of ‘applying’ mathematics to natural objects is mis-
leading to a certain extent, as far as basic quantifications are involved.'

This paper, however, will not focus on mathematics at this basic level, but on the
meaning of mathematics for rational mechanics in the context of theory-building: It
will try to outline some developments and features of rational mechanics as a mathe-
matical science, which seem to me important in order to understand why and how
the very concept of science changed in the century from Isaac Newton’s Principia
(1687) to Joseph-Louis Lagrange’s Mécanique Analytigue (1788). A ‘structural
sketch’ like this, which is meant to characterize a whole century of spirited develop-
ment, will probably provoke the criticism of historians of science, who are tempted
to ‘falsify’ general statements by presenting (at least) one exception to any general
claim. But both history and philosophy of science are in need of ‘synthetic’ attempts
from time to time: No historical knowledge without general claims, no progress of
historical knowledge without such claims and the provocation of counter-examples
which, of course, do exist. Exceptions, however, do not “falsify’ in historical theory,
but prove the rule. It seems more interesting to analyse, for example, why Christiaan
Huygens — one of the most eminent mathematicians and natural philosophers of the
eighteenth century — does not fit well in the picture I am going to draw in this article
than not to see the wood for the trees.

In order to avoid excess length of this paper, illustrating examples are widely
omitted.? T will start with some general remarks on mathematics and mechanics
under the premise of mechanism, which lead to an explication of the central question
of this paper. Subsequently, I will take a short look at Newton’s Principia (1687) as
one — and the most important — starting point of the development in question. The
fourth and largest part of this paper attempts to give a characterisation of the devel-
opment of rational mechanics in the course of the eighteenth century. Finally, I deal
with Lagrange’s Mécanique Analytique (1788) and contrast it with earlier founda-
tions of rational mechanics.

2. Mechanism, mathematics, and rational mechanics

Under mechanism, the primary aim of natural philosophy was the determination of
the motion of material particles under different physical conditions. Motion itself
being regarded as a genuine mathematical concept, natural philosophy had to be not
only an experimental, but also a mathematical science. If the original idea of motion
is taken serlously, the attribute ‘mathematical’ does not mean ‘mathematics apphed
to science’ but rather ‘science, having essentially to do with mathematical entities’,
i.e. with space, time, quantifiable matter, and its changing space-time-relations.

For this reason the new science of motion should be called ‘mathematical philoso-
phy of nature’ rather than ‘mechanics’ The traditional meaning of mechanics as an
art which is directed against the nature of bodies obscures the fact that the
‘new’mechanics deals with natural motions and aims at uncovering their primary
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laws. Newton made this intention quite clear by the full title of his Principia. It was,
however, the label ‘mechanica rationalis’ from the preface of his masterpiece that be-
came prominent later:

The ancients considered mechanics in a twofold respect; as rational, which proceeds accurately by dem-
onstration, and practical. [...] rational mechanics will be the science of motions resulting from any forces
whatsoever, and of the forces required to produce any motions, accurately proposed and demonstrated.
This part of mechanics, as far as it extended to the five powers which relate to manual arts, was cultivated
by the ancients, who considered gravity (it not being a manual power) no otherwise than in moving
weights by those powers. But I consider philosophy rather than arts and write not concerning manual but
natural powers, and consider chiefly those things which relate to gravity, levity, elastic force, the resistance
of fluids, and the like forces, whether attractive or impulsive; and therefore I offer this work as the mathe-
matical principles of philosophy, for the whole burden of philosophy seems to consist in this — from the
phenomena of motions to investigate the forces of nature, and then from these forces to demonstrate the
other phenomena [...].2

“Consider philosophy rather than arts”: Newton’s use of ‘mechanica rationalis’
underlines his foundational claims with respect to the mathematical principles of
natural motion. It is important to note that at this early stage — and also in the course
of the eighteenth century — rational mechanics never was considered as an artificial
or purely formal exercise without physical meaning. Its concepts and primary laws
were located in natural reality, and therefore its deductive consequences were
expected to be empirically meaningful. This does still hold for rational mechanics in
its advanced analytical form which was mainly developed by Leonhard Euler, Jean
Baptiste d’Alembert and Lagrange — though with the latter a turning point will be
reached, as I am going to show. Within the frame of rational mechanics, mathemati-
cal symbols and even the most abstract mathematical formulas refer to matter and
motion as essential elements of physical reality. In short, mathematics in the context
of rational mechanics is ‘semantically laden’.

A second characteristic is of equal importance with respect to the role of mathe-
matics: Rational mechanics follows the ideal of Euclidean geometry, or, to be more
precise, its concept of science is best described as ‘Euclideanism’ in Imre Lakatos’
sense.* It is understood as the best example of an axiomatic-deductively established
mathematical science with empirical content next to geometry. I will here confine
myself to three of the most important features of this ideal: Its first principles are not
only true, but certainly true, i.e. they are infallible with respect to empirical
‘anomalies’. Secondly, Euclideanism is epistemologically neutral, i.e. it includes both
empirical and rationalistic foundations of the science in question.” First principles
can be revealed by ‘the light of reason’ (as in René Descartes, for example) or they
can be ‘deduced from phenomena’ (as in Newton, for example). Thirdly, Euclid-
eanism is anti-pluralistic. There is one (and only one) true mathematical science of
nature, and it is defined by their mathematical principles or axioms.

Newton, in his Principia, uses a noteworthy phrase for his first mathematical prin-
ciples, which makes explicit its twofold task with respect to mechanism and to
Euclideanism: “axiomata sive leges motus”.® As ‘leges motus’, these principles act as
empirical laws of nature which govern the behaviour of (possibly all) material
bodies; they explain phenomena. As ‘axiomata’, they act as first principles of the
theory of mechanics. They govern the known special laws and examples of
mechanics; they organise the whole body of mechanical knowledge in a deductive
manner.

© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Ber. Wissenschaftsgesch. 35 (2012) 183-199



Rational Mechanics in the Eighteenth Century

From a philosophical point of view it is, however, by no means evident that pri-
mary laws of nature are also ‘prime candidates’ for axioms of a deductively organized
theory. Nor is it clear whether such a ‘metatheoretical coincidence’ should be pos-
sible at all: Characteristics of natural laws, in this historical context, are truth, empir-
ical generality, explanatory power with respect to the phenomena, and a certain
intuitivity and evidence with respect to the underlying scientific metaphysics. In
some systems, like that of Descartes or of Gottfried Wilhelm Leibniz, they are even
regarded to be epistemologically necessary. On the other hand, characteristics of first
principles or ‘axioms’ are truth, evidence, generality and deductive power with
respect to the other laws of mechanics. Moreover, they are thought to be neither
provable by other propositions nor — due to their evidence — to be in need of such a
proof. It has to be kept in mind that the traditional meaning of ‘axiom’ is at work
here.

Obviously, the two sets of conditions have features in common, but they do not
coincide. This is an important point of my argument: Laws have to explain nature,
axioms have to organize theories. It is by no means clear that both demands are
granted by the same principles, and it will be shown that — in the course of the eigh-
teenth century — it becomes increasingly difficult to satisfy both demands by the
same principles. This tension creates a fundamental problem for mechanical Euclid-
eanism at the end of the eighteenth century.

A third feature, brought about by divergent scientific metaphysics under the
premise of mechanism, is of equal importance: Albeit the fact that Euclideanism as
leading ideal of science is ‘anti-pluralistic’, the practice of rational mechanics in the
first half of the eighteenth century is pluralistic in character: It is shaped by at least
three competing programs, each being Euclideanistic in the sense described above,
and driven by different metaphysical commitments about the ‘nature’ of matter,
space, time, and force. One has to distinguish between Descartes’ geometrical
mechanics, based on his laws of impact, Newton’s mechanics of forces, based on his
three laws and the law of gravitation, and Leibniz’s dynamics, based on laws of im-
pact and the conservation of ‘“vis viva’,” and backed by a quite complex metaphysics
of primitive and derivative forces.®

Without any doubt, Newton’s Principia was most successful in empirical respect.
It was, however, neither unique in its intention, nor was it complete or faultless in its
execution, nor was it understood as ‘revolutionary’ by the first generation of its read-
ers, as far as the principles of mechanics are in question.” That Newton laid down
principles which are sufficient to solve all problems of mechanics is still a popular
belief, but this belief is simply not true. As far as the foundations of rational
mechanics are at stake, the great ‘Newtonian revolution’ did never take place. Reject-
ing Thomas Kuhn’s image of rational mechanics, but picking up his terminology,
one might say: With regard to the foundations of rational mechanics, the first half of
the eighteenth century was not ‘normal’, because the seventeenth century was not
‘revolutionary’. Rather, this period shows features of a ‘revolution in permanence’.
During such a period, however, formal elements of science gain a peculiar quality
and relevance: While a ‘conceptual discourse’ across the boundaries of actual
scientific metaphysics is hardly possible, mathematics becomes even more important
as a means of scientific exchange. This does not mean to share the somehow naive
view that mathematics works as a kind of ‘meta-language’, capable of solving even
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fundamental dissent about the foundations of rational mechanics. It means instead
that mathematics played a key role in making accessible the results — the empirically
testable outcomes — ‘at the bottom” of one research program of mechanics to the
other programs. It also means that mathematics was indispensable for integrating
those parts which seemed valuable and that it was even the only means in order to
formulate overarching principles from which all the accepted laws of mechanics —
whether they emerged from the ‘own’ research program or not — could be derived.
In short, scientific metaphysics tends towards a separation, mathematics tends
towards an integration of different programs. And at the end of the eighteenth cen-
tury, we have one system, which represents nearly all the accepted ‘mathematical
principles of natural philosophy’, i.e. Lagrange’s Mécanique Analytigue. How could
this integration happen? What was the price that had to be paid for this integration?
And how did it change the understanding of rational mechanics as both mathemati-
cal and empirical science? In general, I will argue that there was a growing tension
between the different demands which rational mechanics should fulfil and that this
tension preludes a dissolution of Euclideanism as an overarching ideal for rational
mechanics at the end of the eighteenth century.

3. The case of Newton’s Principia (1687)

To what extent does Newton’s program fit to the characteristics of mechanical
Euclideanism? It has often been stressed that the Principia follows the standard of
Euclid’s Elements: The formal structure of the Principia — distinguishing definitions,
axioms, propositions, corollas etc. — makes this quite clear. On the other hand, it is,
of course, easy to see that the definitions and ‘axiomata sive leges motus’ do not
‘contain’ the lower-level propositions of the deductive structure in the sense of
Euclid’s geometry. Newton frequently introduces hypothetically'® further proposi-
tions (laws of forces, for example), concrete examples etc. and then uses the
‘axiomata’ in order to derive conclusions which are empirically testable.

But it has to be stressed that the empirical verification (or falsification) only aims
at the hypothesis introduced and not at the ‘axiomata’. Classical empiricism, as
represented by Newton, does not ‘automatically’ imply fallibility of laws or even of
first principles.

This thesis is supported by Newton’s methodological reflection on his ‘axioms’: It
is interesting to note that Newton is pretty cautious with statements about the
axiomatic status of his laws of motion. His whole methodology seems to contain but
one positive instruction of what to do when an inductive generalisation (“Conclu-
sion”) is in conflict with experience:

[...] if no Exception occur from Phaenomena, the Conclusion may be pronounced generally. But if at

any time afterwards any Exception shall occur from Experiments, it may then begin to be pronounced
with such Exceptions as occur.''

Conflicting observations or experiments cannot falsify general conclusions, but
only restrict their range of application. Falsification is even excluded, because
according to Newton’s empiricism both the conflicting phenomenon (“Exception”)
and the inductive generalisation (“Conclusion”) are undisputable true. But Newton’s
consequence — the restriction of the range of applicability by enumeration of
‘exceptions’ — bears a special problem in the case of his axioms: According to his
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empiricist methodology, they can work as axioms only if they are most general, or
even of unrestricted generality. On the other hand, they should allow restrictions, if
we take his methodology seriously. But what Newton really does, in contrast to his
methodology, is to immunize his axioms not only from falsification, but also from
restriction: “As in Geometry [...] so in experimental Philosophy” hypotheses and
“first Principles or Axioms” have to be sharply separated: “These Principles are
deduced from Phaenomena & made general by Induction: wch is the highest evi-
dence that a Proposition can have in this philosophy [...]”; with respect to a possible
falsifying (or better: ‘restricting’) phenomenon he declares that “there is no such
phaenomenon in all nature”.'?

Obviously there is an antagonism between Newton’s empiricist methodology and
his actual attitude towards the axiomata: He claims that they are most general results
of induction, and therefore can be understood as universal laws of nature. But he
actually introduces a set of ingeniously chosen mathematical principles which func-
tion as axioms for the deductive structure of the Principia. In fact, asserted truth is
‘injected’ into rational mechanics not from the bottom, but from the top, and its
flow down to the level of phenomena cannot be turned round by conflicting obser-
vations. For Newton, the material truth of axioms, inundating the whole system of
propositions, stems from mathematics itself. His ‘mathematical realism’'” is at the
core of what may be described as a ‘semi-empirical’ variant of mechanical Euclid-
eanism: His ontology of ‘absolute, true and mathematical space’ and ‘absolute, true
and mathematical time’ is indispensible for his foundation of mechanics, though not
backed by his empiricist methodology.

It seems worth mentioning that Newton and the Newtonians of the first genera-
tion were as certistic as their rationalist rivals: Their aim was, according to Colin
MacLaurin, “to proceed with perfect security, and to put an end for ever to dis-
putes”.'* Newton’s letters and the context of his famous ‘hypothesis non fingo’
make obvious that his version of certism is directed against the rationalist versions of
Descartes and Leibniz, claiming that the axioms of ‘Experimental Philosophy” are
well-grounded, while those of ‘speculative philosophy’ are mere metaphysical fic-
tions."”” One question — which is dealt with in the next part — is how Newton’s
Euclideanism bears upon the understanding of rational mechanics in the context of
these ‘alien’ Euclideanisms, being part of the rationalist tradition.

4. Characteristics of rational mechanics in the eighteenth century

It has often been claimed that Newtonian mechanics made its way on the continent
despite all philosophical resistances because it was empirically extremely successful,
especially in the field of celestial mechanics. This argument is certainly relevant for
Newton’s gravitational theory, but it is of limited range with respect to the founda-
tions of mechanics: First, it presupposes a prevalence of ‘empirical success’ over
‘rational foundation’, which seems problematic for working philosopher-scientists
in this period (like Euler or d’Alembert, for example). Secondly, it is applicable only
in favour of the Newtonian program, but not in the case of its drawbacks. How to
explain, for example, that Pierre L.M. De Maupertuis — first an ardent disciple of
Newton’s philosophy and opponent of Leibniz and Descartes — rejected Newtonian
forces in his later career and tried to replace Newton’s laws by his ‘non-causal’ or
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‘descriptive’ principle of least action?'® How to explain the general tendency
towards general principles without causal claims like the principle of least action or
of virtual velocities in the later eighteenth century? And how to explain the rise of
conservational laws in rational mechanics, which have no foundation in Newton’s
scientific metaphysics? Questions like these cannot be answered in a satisfying man-
ner by referring to Newton’s ‘empirical success’, nor by the mere claim that a general
epistemological switch from ‘rationalism to empiricism” took place. We need to re-
gard the practice of mathematical physics under the premise of diverging forms of
Euclideanism in order to understand these features.

4.1 Inflation of principles

What characterizes rational mechanics above all in the second third of the eighteenth
century is an inflation of mathematical principles: Numerous so-called principles of
statics which had to be integrated into a general science of mechanics, the principle
of the conservation of momentum for impact, the principle of ‘vis viva’-conservation
for (elastic) impact and central force-problems, the three so-called Newtonian prin-
ciples, the principle of moment of momentum, Maupertuis’ ‘loi du repos’ and the
general principle of least action, d’Alembert’s principle and the principle of virtual
velocities, d’Arcy’s principle, Koenig’s principle, and so on — not to mention all the
‘principles’ of continuum and fluid mechanics which had to be coordinated to the
rational mechanics of mass-points.'” These laws were brought about by the three dif-
ferent programs of rational mechanics, they grew out of the study of special prob-
lems and idealised physical situation, which gained their relevance for a mathemati-
cal theory of nature by the respective scientific metaphysics. They were confirmed
by applications to different problems, and often gained their status as ‘principles’ by
this applicability to different classes of phenomena alone. They were not ‘deduced’
from higher principles (like the principle of sufficient reason in Leibniz’s mechanics,
for example), nor were they ‘deduced’ from phenomena (in the sense of Newton’s
inductivism), but they revealed their relevance by their (possibly limited) deductive
and explanatory power. In brief, their status as a ‘principle’ was neither due to meta-
physical nor to empirical foundation, but due to the deductively proceeding practice
of mathematical physics alone.

But Euclideanism — the dominating ideal of science'® — could not tolerate a plural-
ity of principles, especially when they grew out of ‘alien’ scientific metaphysics. It
strives for a small number of axioms, from which lower-level principles must be
deduced. Plurality of principles is a result of different and competing scientific pro-
grams, unity is the aim of Euclideanism.'” If a possibly ‘basic’ principle of one pro-
gram turns out to be of (probably limited) deductive power for a different one, it has
to be integrated in the deductive structure of the latter program, thereby explammg
its applicability. Both the “mania of demonstration”?® in this period, rightly stated
by Ernst Mach, and the fact that it was sometimes unclear that “something must be
assumed”?!, rightly stated by Clifford A. Truesdell, illustrate the efforts made in or-
der to reach systematic order and, at the same time, the fact that the bindings toward
the actual scientific metaphysics worked loose.
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4.2 An illustration: conservation laws in Euler

The ‘removal’ of mathematical principles, which deductively organize mechanics,
and scientific metaphysics, in which originally evidence and ‘necessity’ of first prin-
ciples were rooted, should be illustrated by at least one concrete example, which is
taken from Euler’s contribution to rational mechanics. Euler is probably the most
prolific mathematician of the eighteenth century; his contributions to the develop-
ment of rational mechanics can hardly be overestimated.*” With respect to the devel-
opment of new concepts and principles of rational mechanics he is the most impor-
tant figure in the middle of the century. My illustration deals with the relation of his
scientific metaphysics, which is strongly influenced by his Cartesian matter-theory,
and his mathematical formalism of rational mechanics, which by various historians
of science was and is described as a ‘Newtonian’ one.

Contrary to the historical wisdom of Peter G. Tait and others, it goes without say-
ing today that conservation laws as ‘principles’ have no place in Newton’s program.
It is less well known that they were also alien to Euler’s scientific metaphysics. Euler
was very suspicious that ‘vis viva’ or ‘momentum’ (i.e. impulse, to use the modern
word) — if they were understood as basic concepts of mechanics and, at the same
time, as magnitudes which are conserved in all mechanical processes — are intro-
duced as ‘essential forces’ or ‘active principles’ into rational mechanics, which con-
tradicts his Cartesian theory of ‘passive’ matter.”> But Johann L. Bernoulli and other
‘Leibnizians’ convinced him that the concept of ‘vis viva’ is of considerable relevance
in order to understand the different cases of elastic impact, and it also became impor-
tant for his own investigation of central force-problems. Euler therefore introduced
‘vis viva’ as a derived concept, i.e. as the line integral of Newtonian force, and he also
introduced general impulse as a derived concept, i.e. as time integral of Newtonian
force.”* Problems of conservation of ‘vis viva’ or impulse were thus transformed into
problems of Newtonian mechanics and, in a way, of formal mathematics: When does
an ‘integrable’ force function exist? It depends on the answer of this question, in
which (special) case the famous vis viva-controversy can be decided in favour of
Leibniz or not. This problem, which was at the bottom of one of the most tedious
disputes between the different programs of mechanics in the eighteenth century, thus
became, as Euler said, a mere dispute about words (“logomachies”).”> Conservation
of ‘vis viva’, an axiom of Leibniz’s mechanics, and conservation of impulse, in nuce
an axiom of Descartes’ mechanics, are no longer axioms or principles in Euler’s pro-
gram, but they become derived laws, which can be used in special mechanical cases
in order to explain certain classes of physical phenomena. A ‘Newtonian’, external
and directive force, however, becomes necessarily a primitive concept of Euler’s
mathematical formalism, though he did never accept ‘essential” forces in his theory
of matter, i.e. at an ontological level. This tension between formalism and scientific
metaphysics results from Euler’s striving for a deductive organisation of principles
of mechanics which belong to different research programs. Later, he tried to dissolve
this tension by a ‘matter-theoretical’ interpretation of his principle of least action.*®

4.3 Metatheoretical ‘decline of the centre of gravity’

The illustrative example above highlights the importance of a ‘Newtonian’ concep-
tual framework for Euler’s program, though Euler did not accept important parts of
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Newton’s scientific metaphysics: The relation of metaphysical foundation and math-
ematical formulation of mechanics becomes ambiguous. This, however, cannot be
pursued further in this paper — nor the immediate empirical success which Euler
gained with this framework.

Here, only the consequences of a deductive organisation of the whole body of me-
chanical knowledge is emphasized: It is not sufficient to have ‘certain and evident’
axioms. It must also be shown that the mechanical knowledge accepted as true (for
empirical reasons) falls under these axioms. To use a ‘quasi-Lakatosian’ picture: It is
not sufficient to introduce ‘truth from the top’ by intuitive and indubitable mathe-
matical axioms; it is important to be able to ‘lead truth down to the bottom’. This is a
characteristic feature of Euclideanism in an advanced stage of rational mechanics: It
focuses not so much on how to come to evident and certain axioms at the top, but on
the deductive structure of the growing body of mechanical knowledge. Alwin
Diemer used in a more general context the metaphor of the “decline of the centre of
gravity”?’ in order to illustrate such a ‘structural’ development within mature classi-
cal science that tends to become modern science.

In the course of the eighteenth century, a lot of mathematical and conceptual work
has been done in order to build ‘truth-preserving channels’ for the deductive struc-
ture of rational mechanics.”® The calculus of variation is an excellent example of a
mathematical device which serves this purpose (and which, by the way, was devel-
oped for this reason). The outcome of this process was, as becomes visible already in
Euler’s Oeuvre, a hierarchical organized system, including elements of the different
programs of rational mechanics, but ‘crowned’ by Euler’s transformation of New-
ton’s three laws of motion. But the ‘decline of the centre of gravity” is already present
here: What counts is the truth of the whole body of mechanical knowledge, which is
rather ‘represented’ now by its axioms in a formal way than ‘condensed’ in these
axioms in a material way. This means that the traditional, Euclidean meaning of
‘axiom’ is changing in the process of conserving Euclideanism as an ideal for the
whole body of mechanical knowledge.

4.4 Decline of philosophical foundations

From this important shift results a growing independence of formalised mathemati-
cal physics from philosophical foundations of its principles, regardless whether these
foundations are ‘empirical’ or ‘rational’ in character. It is the deductive power of
principles rather than their empirical or rational basis, their formal axiomatic status
rather than their status as a law of nature, their formal truth rather than their material
truth, which become important. To make another loan of the former picture: If the
deductive channels are already filled with truth, and the truth flow down to the phe-
nomena can be guaranteed, the source of truth becomes less important. Euclideanism
continues to be the ideal of science, but it becomes a syntactical rather than a seman-
tical concept of science.

The ‘syntactical turn’ of rational mechanics in the course of the later eighteenth
century is reflected by two main features. There is a conspicuous decline of method-
ological and metaphysical discussions and — at the same time — a rise of efforts to
come to a deductive organization by appropriate mathematical techniques. The great
controversies about the nature of space and time, the status of gravitation, the exist-
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ence of conservation entities belong to the first half of the century rather than to the
second half, while ‘technical” discussions about the calculus of variations, potential
theory and differential equations were more prominent in the second half than in the
first. Rational mechanics transforms from a mathematical philosophy of nature,
which is still in need for philosophical justification, to a self-sufficient mathematical
representation of mechanical knowledge. Metaphysical regresses to the principle of
sufficient reason, to the principle of identity, to the (alleged) ‘essence’ of matter or to
teleology become increasingly unpopular in the second half of the eighteenth cen-
tury. Most working mathematicians simply refer to empirical success to justify the
respectively used principles of mechanics.?

4.5 Analytical principles of mechanics

This general development is perhaps best illustrated by the ‘analytical mechanics’,*®

to which Euler, d’Alembert and Lagrange contributed substantially. The rise of ana-
lytical principles like those of least action or of virtual velocities cannot be under-
stood by the Mach-Kuhnian pattern of rational mechanics as ‘normal science’ in the
tradition of Newton’s Principia. These principles originated from concrete problems,
and their development was driven, at first, by other programs and partly by substan-
tial philosophical difficulties of the Newtonian program. The principle of least ac-
tion, for example, was understood as an alternative to Newton’s foundation of me-
chanics by Maupertuis as well as by Euler. Only later, with Lagrange, it was inter-
preted as a merely formal alternative to a ‘Newtonian’ axiomatization of mechanics,
Le. as a part of ‘normal Newtonian science’ in Kuhn’s sense.”!

The rise of analytical principles is accompanied by a semantical unloading of their
basic mathematical concepts at the ‘top’ of mechanics, as might be illustrated by the
concept of action in Euler and Maupertuis or the concept of virtual displacement in
d’Alembert and Lagrange. There is a close relation between the process of
‘semantical unloading’ and the changing function of analytical principles: They
started from special problems, but soon turned out to be applicable to a wide range
of phenomena and even to derive a number of more special laws of motion and other
laws. The applicability to a large number of heterogeneous problems was unique in
the history of mechanics. This led to the view that principles like those of least action
can work as an organising principle of the whole of mechanics, i.e. as principles from
which a great variety of special laws of motion and rest can be deduced.”? While
metaphysical discussions were prominent in the early career of the principle of least
action, its later development was determined by the extension and analysis of its
integrative and deductive power. This seems typical of the development of analytical
mechanics in general: Its rise in the second half of the century highlights the striving
of Euclideanism for an axiomatic-deductive organisation of science. But it has to be
noticed that in the course of this process an important change takes place in so far as
principles become formal axioms which deductively organise a whole theory rather
than laws of nature which are meant to describe and explain concrete phenomena.
Lagrange’s mechanics is most significant in this respect.

Ber. Wissenschaftsgesch. 35 (2012) 183-199 © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 193



194

Helmut Pulte

5. The case of Lagrange’s Mécanique Analytique (1788)

In a certain sense, the Mécanique Analytique is the high point and, at the same time,
the final point of the development sketched so far. In a different way, however, it
also marks a break with the older tradition, thereby revealing the basic philosophical
problems of mechanical Euclideanism. Lagrange’s approach can be described as a
‘Newtonian’ one with respect to its underlying scientific metaphysics.”> His genuine
philosophy of science in a narrow sense, however, was strongly influenced by
d’Alembert and Euler. As both his predecessors, he wanted to base mechanics on
certain, evident and perhaps even ‘necessary’ principles. His commitment to
mechanics as an essentially mathematical enterprise in the traditional Euclidean
sense is perhaps expressed best in this famous phrase from the introduction of his
Théorie des fonctions analytiques: “Mechanics can be understood as a geometry with
four dimensions, and the analysis of mechanics can be understood as an extension of
geometrical analysis”.>* Geometry continues to be the formal ideal of science,
though its original methods and subjects — figures and extended magnitudes in space
— are removed from rational mechanics. With respect to his Mécanique Analytique,
Lagrange proudly proclaimed that “no figures are to be found in this work”.”> Geo-
metrical methods and spatial intuition are eliminated in the representation and
demonstration of mechanical propositions at the cost of the analytical approach.

Two additional aspects of the foundational change that takes place with Lagrange
have to be mentioned. First, the absence of nearly all kind of methodology as well as
of explicit metaphysical foundation. The Mécanique Analytiqgue was the first major
textbook in the history of mechanics which refrained from any kind of explicit phil-
osophical reflection. In short, a century after Newton’s Principia, Lagrange gave an
‘update’ of the mathematical principles of natural philosophy, while he abandoned
the traditional subjects of philosophia naturalis. His bold claim to make mechanics
“a new branch”?® of analysis implied not only a rejection of geometrical method. Tt
also implied a rejection of explicit philosophical foundations in the broadest sense:
Lagrange was no longer interested in the conceptual foundations of his mechanics;
he even changed the basic concept of his mechanics for reasons of ‘formal economy’.
The basic mathematical concepts at the top of the deductive structure of his
mechanics are unloaded of meaning. Lagrange’s analytical mechanics therefore can
no longer be understood as an Euclideanistic enterprise in the traditional sense,
because this implies a certain commitment to the ‘material truth’ of its first princi-
ples.

This development seems, in a way, inevitable given the conditions of ‘global’
Euclideanism and successfully competing research programs. I already stressed that
the different scientific metaphysics underlying each program tends to separate these
programs, and that mathematics work against it and aim at an integration of the dif-
ferent approaches. In Lagrange, this integrating power of mathematics gained a spe-
cial quality: While each program aims at building up deductive structures (filled with
different contents), global Euclideanism tends towards building up a unique
‘superstructure’ (left with the problem what its content is). Lagrange was confronted
with an abundance of mechanical laws which were totally different in semantical re-
spect and which emerged from different research programs. He had good reasons to
accept these laws as valid, because they had turned out to be useful in order to de-
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scribe (and deductively ‘explain’) certain classes of mechanical problems. His Euclid-
eanism now operated on the level of these laws which are already expressed in al-
gebraical or analytical form. The higher calculus served as the uniting element in its
deductive chains. In so far, as order and unity became the main targets and the calcu-
lus the main means, his mechanics is rightly called analytical. While the ‘sliding of
the centre of gravity’ continues, axioms are left as formal means of deduction. The
whole system of Lagrange’s analytical mechanics is hold together by logical coher-
ence rather than by material truth.

The second aspect that should be stressed is that Lagrange’s Mé emnzque Analytzque
had a long-term effect on the status of mechanical principles or ‘axioms’. This was
brought about by a significant tension of which Lagrange himself was partly aware,
and some of his successors were even more so: His conjunction of old Euclideanism
and new mathematical instrumentalism suggested that the first principles of mechan-
ics can be established without recourse to any kind of geometrical and physical intui-
tion or philosophical foundation. This led to a conflict with the traditional meaning
of an axiom as a self-evident first proposition, which is neither provable nor in need
of a proof. Lagrange started his major work with one principle, i.e. the principle of
virtual velocities. In the first edition of his Mécanique Analytique, he introduced it
as “a kind of axiom”.?” Later, he stuck to the title ‘axiom’, but had to admit that his
principle lacks one decisive characteristic of an axiom in the traditional meaning: It
seemed to him that it is “not sufficiently evident to be established as a primordial
principle”.*®

This is the basic dilemma of Lagrange’s mechanics: Euclideanism demands evi-
dence, instrumentalism dissolves evidence of first principles. The dilemma became
even more obvious when Lagrange later tried to demonstrate his formal axiom. His
attempts were followed by a large number of other ‘demonstrations’, which all
aimed at a mediation of lost intuition and evidence. There was a manifest “crisis of
principles”?®, and this crisis was a result of the unsolved tension in Lagrange’s me-
chanics. This degeneration of the old Euclidean ideal might be called ‘Rubber-
Euclideanism’- a label used by Lakatos in a different context — because it “stretches
the boundaries of self-evidence”.*® Rational mechanics in the course of the nine-
teenth century reveals a continuing decline of this ideal, and Lagrange’s mechanics
was the unintended turning point of this development. Despite this decline, Euclid-
eanism remained an attractive ideal within theoretical mechanics for nearly one cen-
tury, as was shown elsewhere.

6. Conclusion

I outlined some developments of eighteenth century’s mathematical philosophy of
nature from a ‘unified’ point of view that regards ‘mechanical Euclideanism’ as the
ideal and dominant concept of science, which is rooted in mechanical philosophy
and in a ‘classical’ understanding of science that can be traced back at least to
Aristotle’s Analytica posteriora. According to this ideal, rational mechanics is mathe-
matics both with respect to its content and its form. Kant and later Kantians trans-
formed the philosophical foundation of rational mechanics, but sustained basically
the same ideal.

Ber. Wissenschaftsgesch. 35 (2012) 183-199 © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

195



Helmut Pulte

Today, Euclideanism seems no longer defendable as a position in the philosophy
of the empirical sciences. This is mainly an outcome of the ‘revolutions’ which took
place in early twentieth-century physics — and of the philosophical lessons drawn
from these scientific achievements by Karl R. Popper and others. It should be kept
in mind, however, that even in the nineteenth century so-called ‘Newtonian’
mechanics — which in fact was much more than the mechanics in the tradition of
Newton — was considered to rest on unshakable, indubitable true axioms. The
decline of this mechanical Euclideanism, which starts unwillingly with Lagrange, is a
long-term ‘evolutionary’ process which had to happen before these revolutions
could take place: ‘No Einstein without the (meta-theoretical) evolution from
Lagrange to Mach and Neumann’, one might say. This development is not only —
and presumably not in the first instance — brought about by empirical problems of
classical mechanics, but rather by a change of what ‘proper’ mathematics means.
Lagrange’s ‘analytical purism’ can be understood as an early starting point of this
development, which is strongly determined by the rise of so-called ‘pure’ mathe-
matics in the early nineteenth century. This led to an increase of rigor and to a
‘shrinkage’ of those areas where mathematics can gain evidence and certainty. Com-
parable to Euclidean geometry, rational mechanics was strongly involved in this pro-
cess, and lost its ‘Euclidean dignity’ forever.

1 ‘Application’ refers to a relation or a process of adaptation between two distinguishable entities. As
far as mechanics, in the view of mechanical philosophy, has to do with magnitudes (like extension,
time, motion) from its very beginnings, this concept does not seem appropriate here. Rational
mechanics is not established by the ‘application” of mathematics, but it is mathematics from the very
beginning (see part 2).

2 Cf. Helmut Pulte, Axiomatik und Empirie. Eine wissenschaftstheoriegeschichtliche Untersuchung zur

Mathematischen Naturphilosophie von Newton bis Newmann, Darmstadt: Wissenschaftliche Buchge-

sellschaft 2005, here chapter III and IV, for more details.

Isaac Newton, Mathematical Principles of Natural Philosophy and His System of the World. Translated

into English by A. Motte in 1729. Revised, and supplied with an historical and explanatory appendix

by E. Cajori, Berkeley: University of California Press 1934, p. XVII-XVIII. Alan Gabbey has shown
that the term ‘mechanica rationalis® — taken over by Newton from Pappus — was used in Goclenius’

Lexicon philosophicum Graecum and therefore “was in (probably common) use during the first decade

of the seventeenth century, at the latest”. Alan Gabbey, Newton’s Mathematical Principles of Natural

Philosophy: a Treatise of ‘Mechanics’?, in: Peter M. Harman, Alan E. Shapiro (eds.), The Investigation

of Difficult Things, Cambridge: Cambridge University Press 1992, p. 305-322, here p. 309. It is worth

mentioning that Newton’s reference to Pappus is an example of a certain ‘back to the ancients-leaning’
in Newton which is (inter alia) motivated by his striving for mathematical certainty in natural philos-
ophy along traditional geometrical (Euclidean) lines. For further details see the excellent study of Nic-
cold Guicciardini, Isaac Newton on Mathematical Certainty and Method, Cambridge/London: The

MIT Press 2009, here especially part IV.

4 Cf. Imre Lakatos, Philosophical Papers, ed. by John Worrall and Gregory Currie, 2 vols., Cambridge:
Cambridge University Press 1978, especially vol. 2, p. 28-29.

5 Lakatos makes clear that the dichotomy ‘Euclidian-Empiricist’ (or later: ‘Euclidian-Quasi-empirical’)
applies to whole theories, while single propositions are traditionally qualified as ‘a priori-a posteriori’
or ‘analytic-synthetic’ “[...] epistemologists were slow to notice the emergence of highly organized
knowledge, and the decisive role played by the specific patterns of this organization”; see Lakatos,
Philosophical Papers (see note 4), vol. 2, p. 6. This holds true especially for mechanics. The traditional
dichotomy ‘empiricism-rationalism’ conceals the common basis of infallibility and is not very useful
in a historiographical respect.

w
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6 Isaac Newton’s Philosophiae naturalis principia mathematica. The Third Edition (1726) with Variant
Readings, assembled by Alexandre Koyré, I. Bernard Cohen, with the assistance of Anne Whitman, 2
vols., Cambridge, Massachusetts: Harvard University Press 1972, p. 39 and 54.

7 For a more detailed discussion of these research programs and the historiographical problems in-
volved see Helmut Pulte, Das Prinzip der kleinsten Wirkung und die Kraftkonzeptionen der rationa-
len Mechanik. Eine Untersuchung zur Grundlegungsproblematik bei L. Euler, PL.M. de Maupertuis
und J.L. Lagrange, Stuttgart: Franz Steiner 1989, p. 6-22.

8 A thorough and attentive, though widely ignored study of Leibniz’s concept of force is given by Hans
Stammel, Der Kraftbegriff in Leibniz’ Physik, PhD thesis, University of Mannheim 1982.

9 Concerning the foundations of mechanics, Newton’s principles (‘axiomata sive leges motus’) and his
law of gravitation must be sharply distinguished. What was soon understood as ‘revolutionary’ (in the
sense of an obvious and irreversible break with the older tradition of mechanism) was his celestial
mechanics, i.e. the application of the law of gravity, in combination with his three principles, to the
motion of the moon and the planets. In the last five decades, however, historical research has revised
the traditional picture — drawn by nineteenth-century philosophers and scientists like Ernst Mach,
William Thomson or Peter G. Tait and perpetuated by Thomas S. Kuhn and others — that Newton’s
Principia was ‘revolutionary” with respect to the principles of mechanics. Quite contrary, it has been
shown that neither Newton’s three laws of motion were entirely new, nor that they were understood
as such by his contemporaries and his immediate successors. For a good overview see Henk J.M. Bos,
Mathematics and Rational Mechanics, in: George S. Rousseau, Roy Porter (eds.), The Ferment of
Knowledge: Studies in the Historiography of Eighteenth-Century Science, Cambridge: Cambridge
University Press 1980, p. 327-355.

10 This is one reason why Newton’s mechanics was frequently presented as a model of the ‘hypothetical-
deductive’ concept of science in the modern sense. This view, however, ignores the fact that Newton
regards the ‘axiomata’ by no means as hypothetical. See, as an example of the hypothetical-deductive
interpretation, Ralph M. Blake, Isaac Newton and the Hypothetico-Deductive Method, in: Ralph M.
Blake, Edward H. Madden (eds.), Theories of Scientific Method: Renaissance Through the Nineteenth
Century, Seattle/London: University of Washington Press 1966, p. 119-143.

11 Isaac Newton, Opticks: Or a Treatise of the Reflections, Refractions, Inflections Colours of Light.
Based on the 4™ edition, London, 1730. With a Foreword by Albert Einstein, ed. by L. Bernard Cohen,
New York: Dover Publications 1952 (repr. 1979), p. 404 (Qu. 31). As is well known, this passage para-
phrases Newton’s fourth rule of reasoning in philosophy of the Principia. Cf. Newton, Mathematical
Principles (see note 3), p. 400.

12 Newton to Cotes from March 28th, 1713; see Isaac Newton, The Correspondence, eds. Herbert West-
ren Turnbull, Jonathan French Scott, Alfred Rupert Hall and Laura Tilling, 7 vols., Cambridge: Royal
Society 1959-1977, vol. 5, p. 396-397.

13 This label is rightly applied to Newton by Max Jammer, Concepts of Space. The History of Theories of
Space in Physics, Cambridge, Massachusetts: Harvard University Press 1954, chapter 4.

14 Colin MacLaurin, An Account of Sir Isaac Newton’s Philosophical Discoveries, London: Millar 1748
(repr. Hildesheim/New York: Olms 1971), p. 8. For a more detailed discussion of Newton’s under-
standing of axioms see Pulte, Axiomatik und Empirie (see note 2), chapter III.

15 For more information about this context see Pulte, Axiomatik und Empirie (see note 2), p. 126-131.

16 See Pulte, Das Prinzip der kleinsten Wirkung (see note 7), p. 81-103.

17 Good overviews can be found in René Dugas, A History of Mechanics. Translated by J.R. Maddox,
New York: Dover Publications 1988; Ernst Mach, Die Mechanik in ihrer Entwicklung, historisch-kri-
tisch dargestellt, Leipzig: Brockhaus °1933 (repr.: Darmstadt 1982); Clifford A. Truesdell, A Program
Toward Rediscovering the Rational Mechanics of the Age of Reason, Archive for History of Exact
Sciences 1 (1960), 1-36; Aurel Voss, Die Prinzipien der rationellen Mechanik, Encyclopédie der mathe-
matischen Wissenschaften mit EinschlufS ibrer Anwendungen, vol. 4 (1901), p. 1-121.

18 I already mentioned at the beginning that this ideal does not determine the image of science of all
philosophers and scientists in question here, i.e. ‘dominating’ does not mean ‘unique’. There are also
areas like natural history where this ideal at least was not relevant for scientific practice. I would like
to stress, however, that it was dominant (though not exceptionless) as a leading ideal of science and of
special relevance for the mechanistic tradition that shaped what was labelled ‘classical mechanics’
from the late nineteenth century onwards (and which should not be reduced to ‘Newtonian
mechanics’). Moreover, I would like to stress that I am using the term ‘Euclideanism’ in this paper as a
systematic one in order to structure a complex historical process. It refers to no special historical
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usage, whether this fits to my ‘Lakatosian’ coining or not. Finally, I also underline that ‘Euclideanism’
as it is used here also characterizes science in the important tradition of classical empiricism (see note
5). For further information about this aspect, especially for my analysis of Francis Bacon’s concept of
science in this context, see Pulte, Axiomatik und Empirie (see note 2), chapter II, see especially
p-33-39 and p. 66-75.

19 As d’Alembert put it in the full title of his well-known textbook from 1743: “Traité de Dynamique,
dans lequel les loix de I’equilibre & du Mouvement des Corps sont réduites au plus petit nombre pos-
sible, & démontrées d’une maniére nouvelle, & ot ’on donne un Principe général pour trouver le
Mouvement de plusieurs Corps qui agissent les uns sur les autres, d’une maniére quelconque.”

20 Mach, Mechanik (see note 17), p. 72.

21 Truesdell, Program (see note 17), p. 10.

22 Most noteworthy in this respect are his two large textbooks: Leonhard Euler, Mechanica sive motus
scientia analytice exposita, 2 vols., Petersburg: Academiae Scientiarum 1736; Leonhard Euler, Theoria
motus corporum solidorum seu rigidorum ex primis nostrae cognitionis principiis stabilita et ad omnes
qui in huiusmodi corpora cadere possunt accommodate, Rostock/Greifswald: Rose 1765.

23 See, for example Leonhard Euler’s Anleitung zur Naturlehre, worin die Griinde zur Erklirung aller in
der Natur sich ereignenden Begebenheiten und Verinderungen festgesetzt werden [written around
1755, published posthumously], in: Leonhardi Euleri Opera omnia (3)1, Leipzig: Teubner 1926, p.
16-178, especially p. 16-19.

24 See, first of all, Leonhard Euler, De la force de percussion et de sa véritable mesure, Histoire de I’Aca-
démie Royale des Sciences et Belles-lettres de Berlin 1 (1746), 21-35; the same, in: Leonhardi Euleri
Opera omnia (2)8, Leipzig: Teubner 1965, p. 27-53 and Euler, Anleitung zur Naturlebre (see note 23),
p. 62—63 and 79-82.

25 Euler, De la force (see note 24), p. 34.

26 See Pulte, Prinzip (see note 7), p. 150181 for a detailed reconstruction of this process.

27 See Alwin Diemer, Die Begriindung des Wissenschaftscharakters der Wissenschaften im 19. Jahrhun-
dert — Die Wissenschaftstheorie zwischen klassischer und moderner Wissenschaftskonzeption, in: the
same (ed.), Beitrige zur Entwicklung der Wissenschaftstheorie im 19. Jahrhundert, Meisenheim a. G.:
Anton Hain 1968, p. 3-62, here p. 31: “Die wissenschaftliche GewifSheit und insofern die Wissenschaft-
lichkeit liegt also nicht so sebr in der urspriinglichen Schau als der gesicherten, d.h. systematischen
Ableitung. Dies wird zunichst unmittelbar gesagt und sinngemaf versucht, die entsprechenden Syllo-
gismusstrukturen als die entsprechenden Wege zu entwickeln. In zunehmendem Mafle verlagert sich
dann spiter der Schwerpunkt; er rutscht gewissermaflen ‘abwirts’ [...]” [Hervorhebung im Original].

28 Euler’s work is unique in this respect. I think that neither the rise of the variational calculus nor of
potential theory nor of a great deal of the theory of ordinary and partial differential equations can be
understood without regarding this object. I cannot, however, elaborate on this point here.

29 For examples and a more detailed analysis of this change see Pulte, Axiomatik und Empirie (see note
2), p. 156-168.

30 It is important to note the general use of this technical term: Not all mechanics which make use of the
calculus is called ‘analytical” — Euler’s Mechanica, for example, is not ‘analytical’ in this sense —, but
only mechanics, in so far as it makes use of ‘principles’, which are based on analytical ‘principles’, i.e.
integral variational principles (like that of least action) or differential variational principles (like that
of virtual velocities). Using such principles, analytical mechanics is ‘calculating’ from its very begin-
nings. Cf. Mach, Mechanik (see note 17), p. 445.

31 See Pulte, Prinzip (see note 7), especially p. 193-205 and 252-268.

32 This becomes directly clear, for example, from the titles of some of Maupertuis’ and Euler’s essays on
the principle of least action: See Pierre L.M. de Maupertuis, Accord des différentes Loix de la Nature
qui avoient jusqu’ici paru incompatibles, Mémoires de I’Académie Royale des Sciences de Paris (1748),
417 [Oenvres 4, p. 3]; the same, Les Lois du Mouvement et du Repos déduites d’un Principe Métaphy-
sique, Histoire de I’Académie Royale des Sciences et Belles-lettres de Berlin 2 (1758), 267 [Oenvres 4,
p- 31]; Leonhard Euler, Harmonie entre les principes générales de repos et de mouvement de M. de
Maupertuis, Histoire de I’Académie Royale des Sciences et Belles-lettres de Berlin 7 (1753), 169 [Opera
omnia (2)5, p. 152].

33 Lagrange’s commitment to ‘directive’ forces and to atomism as well as his theory of matter in general
support this thesis. See Pulte, Prinzip (see note 7), p. 232-240.

34 Joseph-Louis Lagrange, Théorie des fonctions analytigues. Nouvelle édition, revue et augmentée par
’auteur, Paris: Courcier 1813, p. 337.
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35 Joseph-Louis Lagrange, Mécanique Analytique, Paris: Desaint 1788, p. vi.

36 Lagrange, Mécanique Analytique (see note 35), p. vi.

37 Lagrange, Mécanique Analytique (see note 35), p. 12.

38 Joseph-Louis Lagrange, Mécanique analytique. Revue, corrigée et annotée par Joseph Bertrand. 3rd
edition, 2 vols., Paris: Mallet-Bachelier 1853 [Oeuvres 11, 12], vol. 1, p. 27, cf. also p. 23.

39 Patrice Bailhache, Introduction et commentaire, in: Louis Poinsot, La Théorie générale de I’équilibre
et du mowvement des systémes, Paris: L'Histoire des Sciences: Textes et Etudes 1975, p. 1-199, here

p-2.
40 Lakatos, Philosophical Papers (see note 4), vol. 2, p. 7.
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